Skip to main content
Log in

Geometry Optimization, Spectral Analysis, Molecular Electrostatic Potential Surface, and Nonlinear Optical Activity of 4-Methyl Anilinium Phenolsulfonate: a DFT Study

  • Published:
Journal of Applied Spectroscopy Aims and scope

The optimized molecular structure, vibrational frequencies and corresponding vibrational assignments as well as 1H NMR and 13C NMR chemical shifts of 4-methyl anilinium phenolsulfonate have been investigated using quantum chemical calculations. Obtained results, in particular, on the geometric structure, chemical shifts of 1H and 13C, and vibrational frequencies are in good agreement with experimental data. The title compound was optimized using the BHandHLYP and WB97XD levels of density functional theory. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been studied using natural bond orbital analysis. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. Polarizability and hyperpolarizability values are calculated at the same levels in order to find the importance of the title compound in nonlinear optics. The molecular electrostatic potential has been simulated to demonstrate electrophilic and nucleophilic sides of the title compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. B. Singh, T. Henningsen, E. P. A. Metz, R. Hamacher, E. Cumberledge, and R. H. Hopkins, Mater. Lett., 12, 270–275 (1991).

    Article  Google Scholar 

  2. Nonlinear Optical Properties of Organic Molecules and Crystals, Eds. D. S. Chemla and J. Zyss, 1, Academic Press, London (1987).

  3. J. Badan, R. Hierle, A. Perigaud, and J. Zuss, Am. Chem. Soc. Sympos. Ser., 233, 81–107 (1983).

    Google Scholar 

  4. R. Santhakumari, K. Ramamurthi, G. Vasuki, B.M. Yamin, and G. Bhagavannarayana, Spectrochim. Acta, A, 76, 369–375 (2010).

    Article  ADS  Google Scholar 

  5. G. M. Frankenbach and M.C. Etter, J. Chem. Mater., 4, 272–278 (1992).

    Article  Google Scholar 

  6. F. D. Proft and P. Geerlings, Chem. Rev., 101, 1451–1464 (2001).

    Article  Google Scholar 

  7. Ö. Tamer, N. Dege, G. Demirtaş, D. Avcı, Y. Atalay, M. Macit, and S. Şahin, J. Mol. Struct., 1063, 295–306 (2014).

    Article  ADS  Google Scholar 

  8. Ö. Tamer, D. Avcı, and Y. Atalay, Spectrochim. Acta, A, 117, 78–86 (2014).

    Article  ADS  Google Scholar 

  9. A. Kunduracıoğlu, Ö. Tamer, D. Avcı, İ. Kani, Y. Atalay, and B. Çetinkaya, Spectrochim. Acta, A, 121, 35–45 (2014).

    Article  Google Scholar 

  10. Ö. Tamer, D. Avcı, and Y. Atalay, J. Appl. Spectrosc., 80, 971–982 (2014).

    Article  ADS  Google Scholar 

  11. H. Pir, N. Günay, Ö. Tamer, D. Avcı, and Y. Atalay, Spectrochim. Acta, A, 112, 331–342 (2013).

    Article  ADS  Google Scholar 

  12. R. K. Balachandar, S. Kalainathan, and S. M. Eappen, J. Podder, Acta Crystallogr. E, 69, 905–1000 (2013).

    Article  Google Scholar 

  13. G. Shanmugam and S. Brahadeeswaran, Spectrochim. Acta, A, 95, 177–183 (2012).

    Article  ADS  Google Scholar 

  14. J. V. Jovita, K. Boopathi, P. Ramasamy, A. Ramanand, and P. Sagayaraj, J. Cryst. Growth, 380, 218–223 (2013).

    Article  ADS  Google Scholar 

  15. Gaussian-09, Gaussian, Inc., Wallingford CT (2009).

  16. M. J. Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys., 80, 3265–3269 (1984).

    Article  ADS  Google Scholar 

  17. GaussView, Version 5, Semichem Inc., Shawnee Mission KS (2009).

  18. A. D. Becke, J. Chem. Phys., 98, 1372–1377 (1993).

    Article  ADS  Google Scholar 

  19. J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 10, 6615–6620 (2008).

    Article  Google Scholar 

  20. M. H. Jamróz, Vibrational Energy Distribition Analysis VEDA4, Warsaw, Poland (2004).

    Google Scholar 

  21. M. H. Jamróz and J.Cz. Dobrowolski, J. Mol. Struct., 565566, 475–480 (2001).

    Article  Google Scholar 

  22. R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys., 109, 8218–8284 (1998).

    Article  ADS  Google Scholar 

  23. S. I. Gorelsky, SWizard Program Revision 4.5, University of Ottawa, Canada (2010) http://www.sg.chem.net.

  24. R. Ditchfield, J. Chem. Phys., 56, 5688–5692 (1972).

    Article  ADS  Google Scholar 

  25. A. Frish, A. B. Nielsen, and A. J. Holder, Gauss View User Manual, Gaussian Inc., Pittsburg, PA (2001)

    Google Scholar 

  26. W. H. James, E. G. Buchanan, C. W. Müller, J. C. Dean, D. Kosenkov, L. V. Slipchenko, L. Guo, A. G. Reidenbach, S. H. Gellman, and T. S. Zwier, J. Phys. Chem. A, 115, 13783–13798 (2011).

    Article  Google Scholar 

  27. D. Shobaa, S. Periandy, M. Karabacak, and S. Ramalingam, Spectrochim. Acta, A, 83, 540–552 (2011).

    Article  ADS  Google Scholar 

  28. F. R. Dollish, W. G. Fateley, and F. F. Bentley, Characteristic Raman Frequencies of Organic Compounds, John Wiley & Sons, New York (1997).

    Google Scholar 

  29. Ö. Tamer, N. Dege, G. Demirtaş, D. Avcı, Y. Atalay, M. Macit, and A. Alaman Ağar, Spectrochim. Acta, A, 117, 13–23 (2014).

    Article  ADS  Google Scholar 

  30. V. Arjunan, M. K. Marchewka, A. Pietraszko, and M. Kalaivani, Spectrochim. Acta, A, 97, 625–638 (2012).

    Article  ADS  Google Scholar 

  31. N. Sudharsana, G. Subramanian, V. Krishnakumar, and R. Nagalakshmi, Spectrochim. Acta, A, 97, 798–805 (2012).

    Article  ADS  Google Scholar 

  32. H. Tanak, K. Pawlus, M. K. Marchewka, and A. Pietraszko, Spectrochim. Acta, A, 118, 82–93 (2014).

    Article  ADS  Google Scholar 

  33. N. P. G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley, New York (1994).

    Google Scholar 

  34. N. B. Colthup, L. H. Daly, and S. E. Wiberly, Introduction to Infrared and Raman Spectroscopy, 3rd ed., Academic Press, Boston (1990).

    Google Scholar 

  35. L. J. Bellamy, The Infrared Spectra of Complex Molecules, 3rd ed., Wiley, New York (1975).

    Book  Google Scholar 

  36. A. Sher Gill and S. Kalainathan, J. Phys. Chem. Solids, 72, 1002–1007 (2011).

    Article  ADS  Google Scholar 

  37. R. G. Pearson, Proc. Natl. Acad. Sci. USA, 83, 8440–8441 (1986).

    Article  ADS  Google Scholar 

  38. H. Pir Gümüş, Ö. Tamer, D. Avcı, and Y. Atalay, Spectrochim. Acta, A, 129, 219–226 (2014).

    Article  ADS  Google Scholar 

  39. H. Pir Gümüş, Ö. Tamer, D. Avcı, and Y. Atalay, Spectrochim. Acta, A, 132, 183–190 (2014).

    Article  ADS  Google Scholar 

  40. R. S. Mulliken, J. Chem. Phys., 23, 1833–1840 (1955).

    Article  ADS  Google Scholar 

  41. J. S. Murray and K. Sen, Molecular Electrostatic Potentials, Concepts and Applications, Elsevier, Amsterdam (1996).

    Google Scholar 

  42. E. Scrocco and J. Tomasi, Adv. Quantum Chem., 11, 115–121 (1978).

    Article  ADS  Google Scholar 

  43. A. E. Reed, F. Weinhold, R. Weiss, and J. Macheleid, J. Phys. Chem., 89, 2688–2694 (1985).

    Article  Google Scholar 

  44. N. Öner, Ö. Tamer, D. Avcı, and Y. Atalay, Spectrochim. Acta, A, 133, 542–549 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ö. Tamer.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 4, p. 645, July–August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamer, Ö., Avcı, D. & Atalay, Y. Geometry Optimization, Spectral Analysis, Molecular Electrostatic Potential Surface, and Nonlinear Optical Activity of 4-Methyl Anilinium Phenolsulfonate: a DFT Study. J Appl Spectrosc 82, 687–699 (2015). https://doi.org/10.1007/s10812-015-0165-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-015-0165-1

Keywords

Navigation