Use of High-Resolution Continuum Source Flame Atomic Absorption Spectrometry (HR-CS FAAS) for Sequential Multi-Element Determination of Metals in Seawater and Wastewater Samples

The objective of this work is to develop a method for the determination of metals in saline matrices using high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Module SFS 6 for sample injection was used in the manual mode, and flame operating conditions were selected. The main absorption lines were used for all the elements, and the number of selected analytical pixels were 5 (CP±2) for Cd, Cu, Fe, Ni, Pb and Zn, and 3 pixels for Mn (CP±1). Samples were acidified (0.5% (v/v) nitric acid), and the standard addition method was used for the sequential determination of the analytes in diluted samples (1:2). The method showed good precision (RSD(%) < 4%, except for Pb (6.5%)) and good recoveries. Accuracy was checked after the analysis of an SPS-WW2 wastewater reference material diluted with synthetic seawater (dilution 1:2), showing a good agreement between certified and experimental results.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    B. Welz, S. Mores, E. Carasek, M. G. R. Vale, M. Okruss, and H. Becker-Ross, Appl. Spectrosc. Rev., 45, 327–354 (2010).

    Article  ADS  Google Scholar 

  2. 2.

    B. Welz, F. G. Lepria, R. G. O. Araujo, S. L. C. Ferreira, M. D. Huang, M. Okruss, and H. Becker-Ross, Anal. Chim. Acta, 647, 137–148 (2009).

    Article  Google Scholar 

  3. 3.

    M. Resano, M. R. Flórez, and E. García-Ruiz, Anal. Bioanal. Chem., 406, 2239–2259 (2014).

    Article  Google Scholar 

  4. 4.

    B. Welz, H. Becker-Ross, S. Florek, U. Heitmann, and M. G. R. Vale, J. Braz. Chem. Soc., 14, 220–229 (2003).

    Article  Google Scholar 

  5. 5.

    M. Resano, M. R. Flórez, and E. García Ruíz, Spectrochim. Acta Part B, 88, 85–97 (2013).

    Article  ADS  Google Scholar 

  6. 6.

    M. Resano and E. García-Ruiz, Anal. Bioanal. Chem., 399, 323–330 (2011).

    Article  Google Scholar 

  7. 7.

    U. Heitmann, B. Welz, D. L. G. Borges, and F. G. Lepri, Spectrochim. Acta Part B, 62, 1222–1230 (2007).

    Article  ADS  Google Scholar 

  8. 8.

    B. Welz, Anal. Bioanal. Chem., 381, 69–71 (2005).

    Article  Google Scholar 

  9. 9.

    V. R. Amorim Filho, V. P. Franzini, and J. A. Gomes Neto, Ecletica Quim., 33, 49,56 (2008).

    Google Scholar 

  10. 10.

    M. Oliveira, S. Casal, S. Morais, C. Alves, F. Dias, S. Ramos, E. Mendes, C. Delerue-Matos, and M. F. P. P. Oliveira, Food Chem., 130, 702–709 (2012).

    Article  Google Scholar 

  11. 11.

    W. Boschetti, R. T. Rampazzo, M. B. Dessuy, M. G. R. Vale, A. Oliveira Rios, P. Hertz, V. Manfroi, P. G. Celso, and M. F. Ferrao, Talanta. 111, 147–155 (2013).

    Article  Google Scholar 

  12. 12.

    M. Harmanescu, D. Popovici, and I. Gergen, J. Agroaliment. Processes Technol., 13, 175–182 (2007).

    Google Scholar 

  13. 13.

    M. Harmanescu, D. Moigradean, and I. Gergen, J. Agroaliment. Processes Technol., 13, 169–174 (2007).

    Google Scholar 

  14. 14.

    G. C. Brandao, G. D. Matos, and S. L. C. Ferreira, Microchem. J., 98, 231–233 (2011).

    Article  Google Scholar 

  15. 15.

    L. S. Nunes, J. T. P. Barbosa, A. P. Fernandes, V. A. Lemos, W. N. L. dos Santos, M. G. A. Korn, and L. S. G. Teixeira, Food Chem., 127, 780–783 (2011).

    Article  Google Scholar 

  16. 16.

    S. R. Oliveira, J. L. Raposo, and J. A. Gomes Neto, Spectrochim. Acta B, 64, 593–596 (2009).

    Article  ADS  Google Scholar 

  17. 17.

    S. R. Oliveira, J. A. Gomes Neto, J. A. Nóbrega, and B. T. Jones, Spectrochim. Acta B, 65, 316–320 (2010).

    Article  ADS  Google Scholar 

  18. 18.

    M. A. Bechlin, J. A. Gomes Neto, and J. A. Nobrega, Microchem. J., 109, 134–138 (2013).

    Article  Google Scholar 

  19. 19.

    R. B. Ferreira, S. R. Oliveira, V. P. Franzini, A. Virgilio, J. L. Raposo, and J. A. Gomes Neto, At. Spectrosc., 32, 56–61 (2011).

    Google Scholar 

  20. 20.

    X. Li and M. Zhang, Xiandai Yiqi, 2, 72–76 (2011).

    Google Scholar 

  21. 21.

    M. B. Dessuy, J. M. Robson, G. C. Brandao, S. L. C. Ferreira, M. G. R. Vale, and B. Welz, Food Addit. Contam. A, 30, 202–207 (2013).

    Article  Google Scholar 

  22. 22.

    V. R. Amorim Filho and J. A. Gomes Neto, Anal. Lett., 41, 1555–1570 (2008).

    Article  Google Scholar 

  23. 23.

    V. R. Amorin Filho and J. A. Gomes Neto, Anal. Sci., 25, 95–100 (2009).

    Article  Google Scholar 

  24. 24.

    J. L. Raposo, S. Ruella de Oliveira, N. M. Caldas, and J. A. Gomes Neto, Anal. Chim. Acta, 627, 198–202 (2008).

    Article  Google Scholar 

  25. 25.

    T. Frentiu, M. Ponta, and R. Hategan, Chem Cent J., 7, 43–47 (2013).

    Article  Google Scholar 

  26. 26.

    A. S. Freire and R. E. Santelli, Spectrochim. Acta, B, 7172, 92–97 (2012).

    Article  Google Scholar 

  27. 27.

    Y. Sohrin and K. W. Bruland, Trend. Anal. Chem., 30, 1291–1307 (2011).

    Article  Google Scholar 

  28. 28.

    K. Grasshoff, Methods of Seawater Analysis, Verlag Chemie, Weinheim (1976).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Bermejo-Barrera.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 4, p. 644, July–August, 2015.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peña-Vázquez, E., Barciela-Alonso, M.C., Pita-Calvo, C. et al. Use of High-Resolution Continuum Source Flame Atomic Absorption Spectrometry (HR-CS FAAS) for Sequential Multi-Element Determination of Metals in Seawater and Wastewater Samples. J Appl Spectrosc 82, 681–686 (2015). https://doi.org/10.1007/s10812-015-0164-2

Download citation

Keywords

  • high-resolution continuum source atomic absorption spectrometry
  • determination of metals in saline matrices
  • water analysis
  • multi-element sequential analysis
  • SPS-WW2