Skip to main content
Log in

Test Station for Frequency-Domain Dielectric Spectroscopy of Nanocomposites and Semiconductors

  • Published:
Journal of Applied Spectroscopy Aims and scope

An upgraded test station is described for determining the electrophysical properties of materials by frequency-domain dielectric spectroscopy. As a result of the upgrade, the range of measurable temperatures is expanded (the full range of measurable temperatures is 10–450 K) and also better accuracy of the measurement and temperature control is achieved. The test station is controlled using a new special computer program. The upgraded test station makes it possible to simultaneously study two samples in the a.c. frequency range from 50 Hz to 5 MHz. Results of studies of the electrical properties (resistance Rp, capacitance Cp, phase shift angle θ, and dielectric loss tangent or dissipation factor tan δ) are presented for the metal–dielectric nanocomposite (FeCoZr)x(CaF2)(100–x).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sari, V. M. Astashynski, E. A. Kostyukevich, A. M. Kuzmitskii, V. V. Uglov, N. N. Cherenda, and Yu. A. Petukhou, High Temperature Material Processes, 16, No. 4, 297–313 (2012).

    Article  Google Scholar 

  2. A. H. Sari, V. M. Astashynski, S. I. Ananin, E. A. Kostyukevich, A. M. Kuzmitski, V. V. Uglov, and N. N. Cherenda, High Temperature Material Processes, 17, No. 1, 47–73 (2013).

    Article  Google Scholar 

  3. A. Ya. Leivi, A. P. Yalovets, and V. S. Krasnikov, High Temperature Material Processes, 17, No. 1, 15–23 (2013).

    Article  Google Scholar 

  4. A. D. Pogrebnjak and V. M. Beresnev, Nanocoatings, Nanosystems, Nanotechnologies, Bentham Books, Sharjah (2012).

    Book  Google Scholar 

  5. A. D. Pogrebnjak, A. G. Ponomarev, A. P. Shpak, and Yu. A. Kunitskii, Physics–Uspekhi, 55, No. 3, 270–300 (2012).

    ADS  Google Scholar 

  6. T. N. Koltunowicz, P. Zhukowski, V. Bondariev, A. Saad, J. A. Fedotova, A. K. Fedotov, M. Milosavljevic, and J. V. Kasiuk, J. Alloy Compd., 615 (Suppl. 1), S361–S365 (2014).

    Article  Google Scholar 

  7. T. N. Kolunowicz, P. Zukowski, M. Milosavljevic, A. M. Saad, J. V. Kasiuk, J. A. Fedotova, Yu. E. Kalinin, A. V. Sitnikov, and A. K. Fedotov, J. Alloy Compd., 586 (Suppl. 1), S353–S356 (2014).

    Article  Google Scholar 

  8. I. A. Svito, A. Fedotov, A. Saad, M. Milosavljevic, J. A. Fedotova, T. N. Koltunowicz, and P. Zukowski, Adv. Cond. Matter. Phys., Article ID 320187 (2015).

  9. N. I. Poliak, V. M. Anishchik, N. G. Valko, C. Karwat, C. Kozak, and M. Opielak, Acta Phys. Pol. A, 125, No. 6, 1415–1417 (2014).

    Article  Google Scholar 

  10. A. D. Pogrebnjak, G. Abadias, O. V. Bondar, B. O. Postolnyi, M. O. Lisovenko, O. V. Kyrychenko, A. A. Andreev, V. M. Beresnev, D. A. Kolesnikov, and M. Opielak, Acta Phys. Pol. A, 125, No. 6, 1280–1283 (2014).

    Article  Google Scholar 

  11. F. Noli, P. Misaelides, A. Hatzidimitriou, E. Pavlidou, and A. D. Pogrenjak, Appl. Surf. Sci., 252, No. 23, 8043–8049 (2006).

    Article  ADS  Google Scholar 

  12. J. Zuk, R. Kuduk, M. Kulik, J. Liskiewicz, D. Maczka, P. V. Zhukovski, V. F. Stelmakh, V. P. Bondarenko, and A. M. Dorofeev, J. Lumin., 57, No. 1–6, 57–60 (1993).

    Article  Google Scholar 

  13. P. W. Zukowski, S. B. Kantorow, K. Kiszczak, D. Maczka, V. F Stelmakh, A. Rodzik, and E. Czarnecka-Such, Phys. Status Solidi A, 128, No. 2, K117–K121 (1991).

    Article  ADS  Google Scholar 

  14. C. Ekanayake, S. M. Gubanski, A. Graczkowski, and K. Walczak, IEEE T Power Deliver, 21, No. 3, 1309–1317 (2006).

    Article  Google Scholar 

  15. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, Claredon Press, Oxford (1979).

    Google Scholar 

  16. T. Koltunowicz, Elektronika — Konstrukcje, Technologie, Zastosowania, 48, No. 10, 37–40 (2007). [in Polish]

    Google Scholar 

  17. T. N. Koltunowicz, Measurement Automation and Monitoring, 57, No. 7, 694–696 (2011). [in Polish]

    Google Scholar 

  18. P. Wegierek and P. Billewicz, Prz. Elektrotechniczn, 88, No. 11B, 364–365 (2012).

    Google Scholar 

  19. P. Wegierek and P. Billewicz, Acta Phys. Pol. A, 125, No. 6, 1392–1395 (2014).

    Article  Google Scholar 

  20. V. Bondariev, K. Kierczynski, K. Czarnacka, O. Boiko, and S. Protsenko, in: Proceedings, Fifth International Conference on Radiation Interaction with Materials: Fundamentals and Applications 2014 (2014), pp. 342–346.

  21. K. Czarnacka, O. Boiko, V. Bondariev, and K. Kierczynski, in: Proceedings, Fifth International Conference on Radiation Interaction with Materials: Fundamentals and Applications 2014 (2014), pp. 358–362.

  22. O. Boiko, K. Czarnacka, V. Bondariev, K. Kierczynski, and S. Protsenko, in: Proceedings, Fifth International Conference on Radiation Interaction with Materials: Fundamentals and Applications 2014 (2014), pp. 336–341.

  23. T. N. Koltunowicz, P. Zhukowski, A. K. Fedotov, A. V. Larkin, A. Patryn, B. Andriyevskyy, A. Saad, J. A. Fedotova, and V. V. Fedotova, Elektron. Elektrotech., 19, No. 4, 37–40 (2013).

    Google Scholar 

  24. F. F. Komarov, P. Zhukowski, R. M. Krivosheev, E. Munoz, T. N. Koltunowicz, V. N. Rodionova, and A. K. Togambaeva, Phys. Status Solidi A, 212, No. 2, 425–432 (2015).

    Article  Google Scholar 

  25. Yu. E. Kalinin, A. T. Ponomarenko, A. V. Sitnikov, and O. V. Stogney, Phys. Chem. Mater. Treatment, 5, 14–20 (2001).

    Google Scholar 

  26. I. V. Zolotukhin, Yu. E. Kalinin, A. T. Ponomarenko, V. G. Shevchenko, A. V. Sitnikov, O. V. Stognei, and O. Figovsky, J. Nanostruct. Polym. Nanocomp., 2, 23–34 (2006).

    Google Scholar 

  27. A. V. Larkin, A. K. Fedotov, J. A. Fedotova, T. N. Koltunowicz, and P. Zhukowski, Mater. Sci. Poland, 30, No. 2, 75–81 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Koltunowicz.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 4, pp. 616–621, July–August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koltunowicz, T.N. Test Station for Frequency-Domain Dielectric Spectroscopy of Nanocomposites and Semiconductors. J Appl Spectrosc 82, 653–658 (2015). https://doi.org/10.1007/s10812-015-0158-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-015-0158-0

Key words

Navigation