Skip to main content
Log in

A Fluorescence Quenching Study of the Interaction of Nebivolol Hydrochloride with Bovine and Human Serum Albumin

  • Published:
Journal of Applied Spectroscopy Aims and scope

The interaction of nebivolol hydrochloride (NH), a β1-blocker, with bovine serum albumin (BSA) has been investigated at different pH values using the fluorescence quenching technique. The effect of different temperatures was studied at physiological pH 7.4. The binding constants of NH with BSA at 288, 298, and 309 K were found to be 2.691 × 1011, 1.38 × 1010, and 6.27 × 108 M−1, respectively. From the Arrhenius plot, the thermodynamic parameters, ΔH0 and ΔS0, were estimated to be –204.48 kJ/mol and –491.42 J/mol × K, respectively. This indicates that Van der Waals interactions and hydrogen bonds play a major role in the reaction. The effect of some inorganic divalent cations (Cu2+, Ni2+, and Zn2+) on binding of NH to BSA was also studied at physiological pH 7.4. Conformational investigation of BSA was done using synchronous fluorescence, showing the change in the microenvironment of the tryptophan residues. Fluorescence quenching reactions of NH to human serum albumin (HSA) and to γ-globulins were investigated and the binding parameters were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Yamasaki, T. Maruyama, U. Kragh-Hansen, and M. Otagiri, Biochim. Biophys. Acta, 1295, 147–157 (1996).

    Article  Google Scholar 

  2. B. P. Kamat and J. Seetharamappa, J. Pharm. Biomed. Anal., 35, 655–664 (2004).

    Article  Google Scholar 

  3. M. D. Reed, C. M. Myers, and J. L. Blumer, Curr. Ther. Res., 8, 558–565 (2001).

    Article  Google Scholar 

  4. N. Seedher, Ind. J. Pharm. Sci., 62, 16–20 (2000).

    Google Scholar 

  5. D. Silva, C. M. Cortez, J. Cunha-Bastos, and S. R. W. Louro, Toxicol. Lett., 147, 53–61 (2004).

    Article  Google Scholar 

  6. A. Rieutord, P. Bourget, G. Torche, and J. F. Zazzo, Int. J. Pharm., 119, 57–62 (1995).

    Article  Google Scholar 

  7. O. Borga and B. Borga, J. Pharmacokinet. Biopharm., 25, 63–77 (1997).

    Article  Google Scholar 

  8. B. Klajnert, L. Stanisławska, M. Bryszewska, and B. Pałecz, Biochim. Biophys. Acta, 1648, 115–126 (2003).

    Article  Google Scholar 

  9. T. J. Peters, All About Albumin. Biochemistry, Genetics, and Medical Applications, Academic Press, San Diego (1996).

    Google Scholar 

  10. Y. Xu, H. X. Shen, and H. G. Huang, Chem. J. Chin. Univ., 17, 1855–1858 (1996).

    Google Scholar 

  11. K. Yamasaki, T. Maruyama, K. Yoshimoto, Y. Tsutsumi, R. Narazaki, A. Fukuhara, U. Kragh-Hansen, and M. Otagiri, Biochim. Biophys. Acta, 1432, 313–323 (1999).

    Article  Google Scholar 

  12. J. Wilting, W. F. van Der Giesen, L. H. M. Janssen, M. M. Weideman, M. Otagiri, and J. H. Perrin, J. Biol. Chem., 255, 3032–3037 (1980).

    Google Scholar 

  13. Y. Q. Wang, H. M. Zhang, G. C. Zhang, J. Pharm. Biomed. Anal., 41, 1041–1046 (2006).

    Article  Google Scholar 

  14. P. B. Kandagal, S. Ashoka, J. Seetharamappa, S. M. T. Shaikh, Y. Jadegoud, and O. B. Ijare, J. Pharm. Biomed. Anal., 41, 393–399 (2006).

    Article  Google Scholar 

  15. S. Baroni, M. Mattu, A. Vannini, R. Cipollone, S. Aime, P. Ascenzi, and M. Fasano, Eur. J. Biochem., 268, 6214–6220 (2001).

    Article  Google Scholar 

  16. E. Karnaukhova, Biochem. Pharmacol., 73, 901–910 (2007).

    Article  Google Scholar 

  17. C. D. Kanakis, P. A. Tarantilis, M. G. Polissiou, S. Diamantoglou, and H. A. Tajmir-Riahi, J. Mol. Struct., 798, 69–74 (2006).

    Article  ADS  Google Scholar 

  18. H. Gao, L. D. Lei, J. Q. Liu, Q. Kong, X. G. Chen, and Z. D. Hu, J. Photochem. Photobiol. A, 167, 213–221 (2004).

    Article  Google Scholar 

  19. P. B. Kandagal, S. M. T. Shaikh, D. H. Manjunatha, J. Seetharamappa, and B. S. Nagaralli, J. Photochem. Photobiol. A, 189, 121–127 (2008) .

    Article  Google Scholar 

  20. A. Sułkowska, B. Bojko, J. Rownicka, P. Rezner, and W. W. Sułkowski, J. Mol. Struct., 744, 781–787 (2006).

    ADS  Google Scholar 

  21. M. Hepel, Electroanalysis, 17, 1401–1412 (2005).

    Article  Google Scholar 

  22. Q. Zhang, S. Ni, and Y. Kokot, Talanta, 88, 524–532 (2012).

    Article  Google Scholar 

  23. I. Girard and S. Ferry, J. Pharm. Biomed., 14, 583–591 (1996).

    Article  Google Scholar 

  24. M. C. Millot, S. Servagent-Noinville, N. L. Taleb, M. H. Baron, M. Revault, and B. Sebille, J. Chromatogr. B: Biomed. Sci. Appl., 753, 101–113 (2001).

    Article  Google Scholar 

  25. Y. Li, W. Y. He, H. X. Liu, X. J. Yao, and Z. D. Hu, J. Mol. Struct., 831, 144–150 (2007).

    Article  ADS  Google Scholar 

  26. J. Oravcova, B. Bobs, and W. Lindner, J. Chromatogr. B, 677, 1–28 (1996).

    Article  Google Scholar 

  27. D. E. Epps, T. J. Raub., V. Caiolfa, A. Chiari, and M. Zamai, J. Pharm. Pharmacol., 51, 41–48 (1998).

    Article  Google Scholar 

  28. M. R. Bristow, P. Nelson, W. Minobe, and C. Johnson, Am. J. Hypertension, 18, N 5, Supp A51–A52 (2005).

  29. A. C. Moffat, M. D. Osselton, and B. Widdop, Clarke’s Analysis of Drugs and Poisons, 3rd ed., 2 (2004).

  30. S. Ashoka, J. Seetharamappa, P. Kandagal, and S. Shaikh, J. Lumin., 121, N 1, 179–186 (2006).

  31. B. Liu, C. Yang, X. Yan, J. Wang, and L. Yunkai, Int. J. Anal. Chem., 2012 (2012); doi:10.1155/2012/408057.

  32. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer, New York (2006).

    Book  Google Scholar 

  33. Y. J. Hu, Y. Liu, J. B. Wang, X. H. Xiao, and S. S. Qu, J. Pharm. Biomed. Anal., 36, 915–919 (2004).

    Article  Google Scholar 

  34. N. Subhan, R. Habibur, A. Ashraful, I. Rashedul, and R. Mahbubur, Rom. J. Biophys. 21, No. 2, 139–149 (2011).

    Google Scholar 

  35. J. Sereikaite, Z. Bumeliene, and V. A. Bumelis, Acta Chromatogr., 15, 298–306 (2005).

    Google Scholar 

  36. M. Dockal, D. C. Carter, and F. Ruker, J. Biol. Chem., 275, 3042–3050 (2000).

    Article  Google Scholar 

  37. V. M. Rosenoer, M. Oratz, and M. A. Rothschild, Albumin. Structure, Function, and Uses, Pergamon Press, New York (1977).

    Google Scholar 

  38. A. Sukowska, J. Mol. Struct., 614, No. 1–3, 227–232 (2002).

    Article  ADS  Google Scholar 

  39. L. Trynda-Lemiesz, B. Keppler, and H. Koztowski, J. Inorg. Biochem., 73, 123–128 (1999).

    Article  Google Scholar 

  40. M. R. Eftink and C. A. Ghiron, J. Phys. Chem., 80, 486–493 (1976).

    Article  Google Scholar 

  41. N. Zhou, Y. Liang, and P. Wang, J. Mol. Struct., 872, No. 2–3, 190–196 (2008).

    Article  ADS  Google Scholar 

  42. F. Rasoulzadeh, D. Asgari, A. Naseri, and M. R. Rashidi, DARU, 18, No. 3, 179–184 (2010).

    Google Scholar 

  43. Y. Wang, H. Zhang, G. Zhang, W. Tao, and S. Tang, J. Mol. Struct., 830, 40–45 (2007)

    Article  ADS  Google Scholar 

  44. F. Bogdan, A. Pirnau, C. Floare, and C. Bugeac, J. Pharm. Biomed. Anal., 47, 981–984 (2008).

    Article  Google Scholar 

  45. W. R. Ware, J. Phys. Chem., 66, 455–458 (1962).

    Article  Google Scholar 

  46. G. Neméthy and H. Scheraga, J. Phys. Chem., 66, 1773–1789 (1962).

    Article  Google Scholar 

  47. S. Timasheff, Proteins of Biological Fluids, Ed. H. Peeters, Pergamon Press, Oxford (1972).

    Google Scholar 

  48. P. Ross and S. Subramanian, Biochemistry, 20, 3096–3102 (1981).

    Article  Google Scholar 

  49. Y. J. Hua, Y. Liu, L. X. Zhang, and R. M. Zhao, J. Mol. Struct., 750, 174–178 (2005).

    Article  ADS  Google Scholar 

  50. M. Rahman, T. Maruyama, T. Okada, K. Yamasaki, and M. Otagiri, Biochem. Pharmacol., 46, 1721–1731 (1993).

    Article  Google Scholar 

  51. J. Zhao, X. Jiang, X. Liu, and F. Ren, Arch. Biol. Sci. Belgrade, 63, No. 2, 325–331 (2011).

    Article  Google Scholar 

  52. J. Jayabharathi, V. Thanikachalam, and M. V. Perumal, J. Lumin., 132, 707–712 (2012).

    Article  Google Scholar 

  53. Y. Zhang, S. Shi, K. Huang, X. Chen, and M. Peng, J. Lumin., 131, 1927–1931 (2011)

    Article  Google Scholar 

  54. R. G. Machicote, M. E. Pacheco, and L. Bruzzone, Spectrochim. Acta, A, 77, 466–472 (2010)

    Article  ADS  Google Scholar 

  55. G. Z. Chen, X. Z. Huang, J. G. Xu, Z. Z. Zheng, and Z. B. Wang, The Methods of Fluorescence Analysis, 2nd ed., Beijing Science Press (1990).

  56. J. N. Miller, Anal. Proc., 16, 203–209 (1979)

    ADS  Google Scholar 

  57. K. H. Ulrich, Pharmacol. Rev., 33, 17–53 (1981).

    Google Scholar 

  58. F. Meng, J. Zhu, A. Zhao, S. Yu, and C. Lin, J. Lumin., 132, 1290–1298 (2012).

    Article  Google Scholar 

  59. F. Cui, Y. Yan, Q. Zhang, X. Yao, G. Qu, and Y. Lu , Spectrochim. Acta, A, 74, 964–971 (2009).

    Article  ADS  Google Scholar 

  60. X. Pan, R. Liu, P. Qin, L. Wang, and X. Zhao, J. Lumin., 130, 611–617 (2010).

    Article  Google Scholar 

  61. G. Zhang, N. Zhao, and L.Wang, J. Lumin., 131, 880–887 (2011).

    Article  Google Scholar 

  62. I. Petitpas, T. Grune, A. A. Bhattacharya, and S. Curry, J. Mol. Biol., 314, 955–960 (2001).

    Article  Google Scholar 

  63. G. D. Olsen, Clin. Pharmacol. Ther., 17, No. 1, 31–35 (1975).

    Google Scholar 

  64. H. Sun, M. S. Chow, and E. G. Maderazo, Antimicrob. Agents Chemother., 35, 112232–112237 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Abdel-Aziz.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 4, pp. 584–591, July–August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Aziz, L., Abdel-Fattah, L., El-Kosasy, A. et al. A Fluorescence Quenching Study of the Interaction of Nebivolol Hydrochloride with Bovine and Human Serum Albumin. J Appl Spectrosc 82, 620–627 (2015). https://doi.org/10.1007/s10812-015-0154-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-015-0154-4

Keywords

Navigation