Advertisement

Journal of Applied Spectroscopy

, Volume 82, Issue 3, pp 450–455 | Cite as

Discrimination of Breast Cancer from Normal Tissue with Raman Spectroscopy and Chemometrics

  • Q.-B. Li
  • W. Wang
  • Ch.-H. Liu
  • G.-J. ZhangEmail author
Article

Conventional Raman spectra of normal and cancerous breast tissues were acquired at an excitation wavelength of 785 nm and subjected to a discrimination analysis. First the spectra were pretreated with wavelet transform and polynomial fitting; next, cancerous tissue was identified by applying an adaptive local hyperplane K-nearest neighbor (ALHK) method to the pretreated spectra. The best discrimination accuracy of the ALHK method was 93.2%. In summary, normal and cancerous breast tissue were accurately distinguished by a miniature laser Raman spectrometer and the chemometrics method (ALHK), which might prove to be a portable and accessible diagnostic system.

Keywords

breast cancer miniature Raman spectrometer adaptive local hyperplane K-nearest neighbor (ALHK) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Siegel, D. Naishadham, and A. Jemal, CA-Cancer J. Clin., 62, 10–29 (2012).CrossRefGoogle Scholar
  2. 2.
    G. Z. Yu, Natl. Med. J. China, 90, 505–507 (2010).Google Scholar
  3. 3.
    R. R. Alfano, G. Tang, A. Pradhan, W. Lam, D. S. J. Choy, and E. Opher, IEEE J. Quant. Electron, 23, 1806–1811 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    Q. B. Li, X. J. Sun, Y. Z. Xu, L. M. Yang, Y. F. Zhang, S. F. Weng, J. S. Shi, and J. G. Wu, Clin. Chem., 51, 346–350 (2005).CrossRefGoogle Scholar
  5. 5.
    C. Murali Krishna, G. D. Sockalingum, Rani A. Bhat, L. Venteo, Pralhad Kushtagi, M. Pluot, and M. Manfait, Anal. Bioanal. Chem., 387, 1649–1656 (2007).CrossRefGoogle Scholar
  6. 6.
    Z. F. Zhuang, N. Li, Z. Y. Guo, M. F. Zhu, K. Xiong, and S. J. Chen, J. Biomed. Opt., 18, 031103-1-3 (2013).Google Scholar
  7. 7.
    S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, Br. J. Surg., 97, 550–557 (2010).CrossRefGoogle Scholar
  8. 8.
    J. C. Zhu, J. Zhou, J. Y. Guo, W. Y. Cai, B. Liu, and Z. G. Wang, Chem. Cent. J., 7, 1–5 (2013).CrossRefGoogle Scholar
  9. 9.
    J. Yang, Z.Y. Wang, S. F. Zong, C. Y. Song, R. H. Zhang, and Y. P. Cui, Anal. Bioanal. Chem., 402, 1093–1100 (2012).CrossRefGoogle Scholar
  10. 10.
    C. H. Liu, Y. Zhou, Y. Sun, J. Y. Li, L. X. Zhou, S. Boydston-White, V. Masilamani, K. Zhu, Y. Pu, and R. R. Alfano, TCRT, 12, 371–382 (2013).Google Scholar
  11. 11.
    R. A. Bitar, H. S. Martinho, C. J. Tierra-Criollo, R. L. N. Zambelli, M. M. Netto, and A. A. Martin, J. Biomed. Opt., 11, 054001-1–5 (2006).Google Scholar
  12. 12.
    A. F. García, L. Raniero, R. A. Canevari, K. J. Jalkanen, and R. A. Bitar, Theor. Chem. Acc., 130, 1231–1238 (2011).CrossRefGoogle Scholar
  13. 13.
    C. Yu, E. Gestl, K. Eckert, D. Allara, and J. Irudayaraj, Cancer Detect. Prev., 30, 515–522 (2006).CrossRefGoogle Scholar
  14. 14.
    A. Zoladek, F. C. Pascut, P. Patel, and L. Notingher, J. Raman Spectrosc., 42, 251–258 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, J. Lyons, D. Hicks, M. Fitzmaurice, R. R. Dasari, J. P. Crowe, and M. S. Feld, Cancer Res., 66, 3317–3322 (2006).CrossRefGoogle Scholar
  16. 16.
    A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, R. Shenk, N. Wang, R. R. Dasari, M. Fitzmaurice, and M. S. Feld, J. Biomed. Opt., 14, 054023-1-8 (2009).Google Scholar
  17. 17.
    M. V. P. Chowdary, K. K. Kumar, S. Mathew, L. Rao, C. M. Krishna, and J. Kurien, Biopolymers, 91, 539–546 (2009).CrossRefGoogle Scholar
  18. 18.
    S. G. Mallat, IEEE T. Pattern Anal., 11 (1989).Google Scholar
  19. 19.
    H. B. Qi, X. F. Liu, and C. Pan, Int. Con. Intel. Comput. Tec. Aut., 2, 126–129 (2010).Google Scholar
  20. 20.
    T. Yang and V. Kecman, Neurocomputing, 71, 3001–3004 (2008).CrossRefGoogle Scholar
  21. 21.
    T. Yang, V. Kecman, L. B. Cao, C. Q. Zhang, and J. Z. Huang, Exp. Syst. Appl., 38, 12348–12355 (2011).CrossRefGoogle Scholar
  22. 22.
    M. V. P. Chowdary, K. K. Kuntar, J. Kurien, S. Mathew, and C. M. Krishna, Biopolymers, 83, 556–569 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Instrumentation Science and Opto-Electronics Engineering, Precision Opto-Mechatronics Technology Key Laboratory of Education MinistryBeihang UniversityBeijingChina
  2. 2.Institute for Ultrafast Spectroscopy and Lasers, The Department of Physics of the City College of the City University of New YorkNew YorkUSA

Personalised recommendations