Skip to main content
Log in

Use of Optical Spectroscopy Methods to Determine the Solubility Limit for Nitrogen in Diamond Single Crystals Synthesized by Chemical Vapor Deposition

  • Published:
Journal of Applied Spectroscopy Aims and scope

We have studied the upper limits for incorporation of nitrogen and formation of arrays of nitrogen–vacancy (NV) color centers in optical-quality single-crystalline diamond synthesized by chemical vapor deposition (CVD). The CVD diamond samples were grown in a microwave plasma in methane–hydrogen mixtures with high content (200–2000 ppm) of the nitrogen dopant in the gas mixture, and were analyzed using Raman and photoluminescence spectroscopy. From the UV absorption spectra, we established that the solubility limit for substitutional nitrogen in the studied material is close to 2·1018 cm–3 (under typical synthesis conditions), which lets us in particular form arrays of NV center with similar concentrations by means of irradiation and annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Aharonovich, A. D. Greentree, and S. Prawer, Nat. Photon., 5, No. 7, 397–405 (2011).

    ADS  Google Scholar 

  2. F. Jelezko, C. Tietz, A. Gruber, I. Popa, A. Nizovtsev, S. Kilin, and J. Wrachtrup, Single Molecules, 2, No. 4, 255–260 (2001).

    Article  ADS  Google Scholar 

  3. S. Ya. Kilin, A. P. Nizovtsev, F. Jelezko, I. Popa, A. Gruber, and J. Wrachtrup, Physica B, 340–342, 106–110 (2003).

    Google Scholar 

  4. D. Ho, ACS Nano, 3, No. 12, 3825–3829 (2009).

    Article  Google Scholar 

  5. N. Prabhakar, T. Nareoja, E. von Haartman, D. S. Karaman, H. Jiang, S. Koho, T. Dolenko, P. Haninen, D. I. Vlasov, V. G. Ralchenko, S. Hosomi, I. I. Vlasov, C. Sahlgren, and J. M. Rosenholm, Nanosc., 5, No. 9, 3713–3722 (2013).

    ADS  Google Scholar 

  6. F. Jelezko and J. Wrachtrup, Phys. Status Solidi A, 203, No. 13, 3207–3225 (2006).

    ADS  Google Scholar 

  7. E. Rittweger, K. Young Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photon., 3, 144 (2009).

    ADS  Google Scholar 

  8. I. I. Vlasov, V. G. Ralchenko, A. V. Khomich, S. V. Nistor, D. Shoemaker, and R. A. Khmelnitskii, Phys. Status Solidi A, 181, No. 1, 83–90 (2000).

    ADS  Google Scholar 

  9. V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker, Phys. Rev. B, 80, 115202 (2009).

    ADS  Google Scholar 

  10. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, Nat. Mater., 8, No. 5, 383–387 (2009).

    ADS  Google Scholar 

  11. A. M. Edmonds, U. F. S. D’Haenens-Johansson, R. J. Cruddace, M. E. Newton, K.-M. C. Fu, C. Santori, R. G. Beausoleil, D. J. Twitchen, and M. L. Markham, Phys. Rev. B, 86, 035201 (2012).

    ADS  Google Scholar 

  12. R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, Ann. Rev. Phys. Chem., 65, 83–105 (2014).

    ADS  Google Scholar 

  13. J. Achard, F. Silva, O. Brinza, A. Tallaire, and A. Gicquel, Diam. Rel. Mat., 16, No. 4, 685–689 (2007).

    Google Scholar 

  14. H. Watanabe, T. Kitamura, S. Nakashima, and S. Shikata, J. Appl. Phys., 105, 093529 (2009).

    ADS  Google Scholar 

  15. B. Willems, A. Tallaire, and J. Achard, Proc. Int. Tech. Conf. Diamond, Cubic Boron Nitride and Their Applications, 2–4 May 2011, Chicago (2011), pp. 1–9.

  16. J. Lu, Y. Gu, T. A. Grotjohn, T. Schuelke, and J. Asmussen, Diam. Rel. Mater., 37, 17–28 (2013).

    Google Scholar 

  17. A. Chayahara, Y. Mokuno, Y. Horino, Y. Takasu, H. Kato, H. Yoshikawa, and N. Fujimori, Diam. Rel. Mater., 13, Nos. 11–12, 1954–1958 (2004).

    Google Scholar 

  18. Z. Yiming, F. Larsson, and K. Larsson, Theor. Chem. Acc., 133, No. 2, 1432 (2014).

    Google Scholar 

  19. S. V. Nistor, M. Stefan, V. Ralchenko, A. Khomich, and D. Schoemaker, J. Appl. Phys., 87, No. 12, 8741–8746 (2000).

    ADS  Google Scholar 

  20. C.-S. Yan and Y. K. Vohra, Diam. Rel. Mater., 8, No. 11, 2022–2031 (1999).

    Google Scholar 

  21. Y. Mokuno, A. Chayahara, Y. Soda, H. Yamada, Y. Horino, and N. Fujimori, Diam. Rel. Mater., 15, Nos. 4–8, 455–459 (2006).

    Google Scholar 

  22. I. R. Lewis and H. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line, CRC Press, Boca Raton (2001).

    Google Scholar 

  23. A. Tallaire, A. T. Collins, D. Charles, J. Achard, R. Sussmann, A. Gicquel, M. E. Newton, A. M. Edmonds, and R. J. Cruddace, Diam. Rel. Mater., 15, No. 10, 1700–1707 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Vlasov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 2, pp. 248–253, March–April, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khomich, A.A., Kudryavtsev, O.S., Bolshakov, A.P. et al. Use of Optical Spectroscopy Methods to Determine the Solubility Limit for Nitrogen in Diamond Single Crystals Synthesized by Chemical Vapor Deposition. J Appl Spectrosc 82, 242–247 (2015). https://doi.org/10.1007/s10812-015-0092-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-015-0092-1

Keywords

Navigation