Skip to main content
Log in

Phase Composition and Electro-Optic Properties of Proton-Exchanged Waveguides in Lithium Niobate Crystals*

  • Published:
Journal of Applied Spectroscopy Aims and scope

Based on experimental data on the shift of the fundamental absorption edge, we have quantitatively estimated the electro-optic coefficient r 13 in proton-exchanged waveguides containing different H x Li1–x NbO3 phases. The phase composition of the waveguides was determined based on IR reflectance and micro-Raman spectroscopy data. We established that the electro-optic properties of the waveguides depend on their phase composition. The results obtained allowed us to optimize the process for preparation of phase modulators based on channel waveguides in LiNbO3 crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Loni and R. M. De La Rue, Appl. Opt., 31, 5096–5098 (1992).

    Article  ADS  Google Scholar 

  2. M. M. Howerton, W. K. Burns, P. R. Skeath, and A. S. Greenblatt, IEEE J. Quantum Electron., 27, 593–600 (1991).

    Article  ADS  Google Scholar 

  3. S. T. Vohra, A. R. Mickelson, and S. E. Asher, J. Appl. Phys., 66 5161–5174 (1989).

    Article  ADS  Google Scholar 

  4. Yu. N. Korkishko and V. A. Fedorov, IEEE J. Sel. Top. Quantum Electron., 2, 187–196 (1996).

    Article  Google Scholar 

  5. M. Rottschalk, A. Rasch, and W. Karthe J. Opt. Commun., 9, 19–23 (1988).

    Article  Google Scholar 

  6. A. Loni, R. M. De La Rue, and J. M. Winfi eld, in: Topical Meeting on Integrated and Guided Wave Optics, Houston (1989); MD3-1.

  7. R. Narayan, IEEE J. Sel. Top. Quantum Electron., 3, 796–807 (1997).

    Article  Google Scholar 

  8. T. T. Lay, Y. Kondo, and Y. Fujii, IEICE Trans., E74, 3870–3872 (1991).

    Google Scholar 

  9. S. M. Kostritskii, Y. N. Korkishko, V. A. Fedorov, M. V. Proyaeva, and E. A. Baranov, Tech. Phys., 47, 74–79 (2002).

    Article  Google Scholar 

  10. Yu. N. Korkishko, V. A. Fedorov, and S. M. Kostritskii, J. Appl. Phys., 84, 2411–2419 (1998).

    Article  ADS  Google Scholar 

  11. I. Savatinova, S. Tonchev, E. Liarokapis, and M. Armenise, Appl. Phys. A, 68 483–487 (1999).

    Article  ADS  Google Scholar 

  12. M. Kuneva and S. Tonchev, Bulg. Chem. Commun., 43, 276–287 (2011).

    Google Scholar 

  13. M. Di Domenico and S. H. Wemple, J. Appl. Phys., 40, 720–732 (1969).

    Article  ADS  Google Scholar 

  14. S. M. Kostritskii, S. V. Rodnov, Yu. N. Korkishko, V. A. Fedorov, and O. G. Sevostyanov, Ferroelectrics, 440, 47–56 (2012).

    Article  Google Scholar 

  15. A. S. Barker and A. J. Sievers, Rev. Modern Phys., 47, 1–179 (1975).

    Article  Google Scholar 

  16. J. B. Bates, J. C. Wang, and R. A. Perkins, Phys. Rev. B, 19, 4130–4137 (1979).

    Article  ADS  Google Scholar 

  17. H. Ahlfeldt, J. Webjorn, P. A. Thomas, and S. J. Teat, J. Appl. Phys., 77, 4467–4476 (1995).

    Article  ADS  Google Scholar 

  18. V. M. Fridkin, K. D. Kochev, Y. S. Kusminov, K. A. Verkhovskaya, and T. R. Volk, Phys. Status Solidi (a), 33, K137–K139 (1976).

    Article  ADS  Google Scholar 

  19. S. M. Kostritskii, Yu. N. Korkishko, V. A. Fedorov, A. N. Alkaev, V. S. Kritzak, P. Moretti, S. Tascu, and B. Jacquier, Proc. SPIE, 4944, 346–352 (2003).

    ADS  Google Scholar 

  20. H. G. Muller, A. D. Stapleton, B. J. Foran, G. Radhakrishnan, H. I. Kim, P. M. Adams, R. A. Lipeles, and P. Herman, J. Appl. Phys., 110, 033539 (2011).

    Article  ADS  Google Scholar 

  21. S. M. Kostritskii, Yu. N. Korkishko, and V. A. Fedorov, Proc. SPIE, 9065, 9065E (2013).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Kostritskii.

Additional information

*Report given at the International Conference on Crystal Optics, 23–26 September 2014, Mozyr, Belarus.

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 2, pp. 240–247, March–April, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostritskii, S.M., Korkishko, Y.N., Fedorov, V.A. et al. Phase Composition and Electro-Optic Properties of Proton-Exchanged Waveguides in Lithium Niobate Crystals*. J Appl Spectrosc 82, 234–241 (2015). https://doi.org/10.1007/s10812-015-0091-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-015-0091-2

Keywords

Navigation