Journal of Applied Spectroscopy

, Volume 82, Issue 2, pp 193–199 | Cite as

Effect of Salt Ions on the Proton-Transfer Rate in 3-Hydroxyflavone

  • V. I. Tomin
  • D. V. Ushakou

The effects of lithium and chloride ions on the spectral characteristics of the two-band fluorescence of 3-hydroxyflavone solutions were studied. The obtained absorption, emission, and fluorescence excitation spectra showed that the salt ions effectively modulated intramolecular proton transfer in the excited state, which led to increases in the shortwavelength band intensity and the fluorescence quantum yield. Thus, the quantum yield for 3-hydroxyflavone in acetonitrile with salt concentrations 0.005, 0.01, and 0.02 M increased by 1.5, 2.0, and 3.0 times, respectively, with standard excitation in the principal absorption band. The intensity ratio of the short-wavelength and longwavelength bands also increased as the salt concentration increased. The increase was so significant that the color change of the fluorescence was easily noticed visually. The good sensitivity of the fluorescence-band intensity ratio to the salt concentration could provide a basis for solving the inverse problem, i.e., determining the salt concentration in solutions and biological objects. An explanation allowing the obtained changes in the fluorescence spectral properties after adding LiCl to the solution to be interpreted was proposed.


fluorescence flavonols 3-hydroxyfl avone proton transfer lithium chloride 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. P. Demchenko, K.-C. Tang, and P.-T. Chou, Chem. Soc. Rev., 42, 1379–1408 (2013).CrossRefGoogle Scholar
  2. 2.
    J. Zhao, J. Shaomin, Y. Chen, H. Guo, and P. Yang, Phys. Chem. Chem. Phys., 14, 8803–8817 (2012).CrossRefGoogle Scholar
  3. 3.
    V. I. Tomin, A. P. Demchenko, and P.-T. Chou, J. Photochem. Photobiol., C, 22, 1–18 (2015).CrossRefGoogle Scholar
  4. 4.
    A. S. Klymchenko and A. P. Demchenko, New J. Chem., 28, 687–692 (2004).CrossRefGoogle Scholar
  5. 5.
    M. A. Bellucci and D. F. Coker, J. Chem. Phys., 136, 194505 (2012).CrossRefADSGoogle Scholar
  6. 6.
    V. V. Shynkar, Y. Mely, G. Duportail, E. Piemont, A. S. Klymchenko, and A. P. Demchenko, J. Phys. Chem. A, 107, 9522–9529 (2003).CrossRefGoogle Scholar
  7. 7.
    S. J. Formosinho and L. G. Arnaut, J. Photochem. Photobiol., A, 75, 21–48 (1993).Google Scholar
  8. 8.
    M. Voicescu, S. Ionescu, and F. Gatea, J. Fluoresc., 24, 75–83 (2014).CrossRefGoogle Scholar
  9. 9.
    S. Ameer-Beg, S. M. Ormson, R. G. Brown, P. Marousek, M. Towrie, E. T. J. Nibbering, P. Foggi, and F. V. R. Neuwahl, J. Phys. Chem. A, 105, 3709–3718 (2001).CrossRefGoogle Scholar
  10. 10.
    S. Ameer-Beg, S. M. Ormson, X. Poteau, R. G. Brown, P. Foggi, L. Bussotti, and F. V. R. Neuwahl, J. Phys. Chem. A, 108, 6938–6943 (2004).CrossRefGoogle Scholar
  11. 11.
    N. A. Nemkovich, W. Baumann, and V. G. Pivovarenko, J. Photochem. Photobiol., A, 140, 19–24 (2002).CrossRefGoogle Scholar
  12. 12.
    L. G. Arnaut, in: Proton Transfer in Hydrogen-Bonded Systems, T. Bountis (Ed.), NATO ASI Series, Plenum, New York (1992), pp. 281–295.Google Scholar
  13. 13.
    P. F. Barbara and A. J. G. Strandjord, Springer Ser. Chem. Phys., 38, 374–376 (1984).Google Scholar
  14. 14.
    V. I. Tomin, S. Oncul, G. Smolarczyk, and A. P. Demchenko, Chem. Phys., 342, 126–134 (2007).CrossRefADSGoogle Scholar
  15. 15.
    P. K. Sengupta and M. Kasha, Chem. Phys. Lett., 68, 382 (1979).CrossRefADSGoogle Scholar
  16. 16.
    D. McMorrow and M. Kasha, Proc. Natl. Acad. Sci. USA, Biophys., 81, 3375–3378 (1984).CrossRefADSGoogle Scholar
  17. 17.
    D. McMorrow and M. Kasha, J. Am. Chem. Soc., 105, 5133–5134 (1983).CrossRefGoogle Scholar
  18. 18.
    A. D. Roshal, A. V. Grigorovich, A. O. Doroshenko, V. G. Pivovarenko, and A. P. Demchenko, J. Photochem. Photobiol., A, 127, 89–100 (1999).CrossRefGoogle Scholar
  19. 19.
    V. G. Pivovarenko, Ukr. Bioorg. Acta, 1, 3–12 (2005).Google Scholar
  20. 20.
    A. P. Demchenko, A. S. Klymchenko, V. G. Pivovarenko, and S. Ercelen, in: Ratiometric Probes: Design and Applications. Fluorescence Spectroscopy, Imaging and Probes: New Tools in Chemical, Physical and Life Sciences, R. Kraayenhof, A. J. W. G. Visser, and H. C. Gerritsen (Eds.), Springer Series on Fluorescence Methods and Applications, Vol. 2, Springer-Verlag, Heidelberg, Germany (2002), pp. 101–110.Google Scholar
  21. 21.
    D. Altschuh, S. Oncul, and A. P. Demchenko, J. Mol. Recognit., 19, 459–477 (2006).CrossRefGoogle Scholar
  22. 22.
    J. Han and K. Burgess, Chem. Rev., 110, 2709–2728 (2010).CrossRefGoogle Scholar
  23. 23.
    T. Terai and T. Nagano, Curr. Opin. Chem. Biol., 12, 515–521 (2008).CrossRefGoogle Scholar
  24. 24.
    J. Rao, A. Dragulescu-Andrasi, and H. Yao, Curr. Opin. Biotechnol., 18, 17–25 (2007).CrossRefGoogle Scholar
  25. 25.
    M. Leopoldo, E. Lacivita, F. Berardi, and R. Perrone, Drug Discovery Today, 14, 706–712 (2009).CrossRefGoogle Scholar
  26. 26.
    A. S. Klymchenko, V. G. Pivovarenko, and A. P. Demchenko, Spectrochim. Acta, Part A, 59, 787–792 (2003).CrossRefADSGoogle Scholar
  27. 27.
    N. G. Bakhshiev, Spectroscopy of Intermolecular Interactions [in Russian], Nauka, Leningrad (1972).Google Scholar
  28. 28.
    A. S. Klymchenko and A. P. Demchenko, Phys. Chem. Chem. Phys., 5, 461–468 (2003).CrossRefGoogle Scholar
  29. 29.
    G. Duportail, A. Klymchenko, Y. Mely, and A. Demchenko, J. Fluoresc., 12, 181–185 (2002).CrossRefGoogle Scholar
  30. 30.
    S. O. Yesylevskyy, A. S. Klymchenko, and A. P. Demchenko, J. Mol. Struct.: THEOCHEM, 755, 229–239 (2005).CrossRefGoogle Scholar
  31. 31.
    J. R. Lakowicz, Principles of Fluorescent Spectroscopy, 3rd edn., Springer, (2006).Google Scholar
  32. 32.
    B. Valeur, Molecular Fluorescence. Principles and Applications, 4th edn., Wiley-VCH, (2007).Google Scholar
  33. 33.
    J. Burgess, Metal Ions in Solution, Ellis Horwood, New York (1978).Google Scholar
  34. 34.
    A. P. Demchenko, in: Fundamental Photoprocesses and Inhomogeneous Broadening of Electronic Spectra of Organic Molecules in Solutions, V. I. Tomin (Ed.), Wyd. PAP, Słupsk (2006), pp. 79–98.Google Scholar
  35. 35.
    A. O. Doroshenko, J. Mol. Struct., 933, 169–171 (2009).Google Scholar
  36. 36.
    V. I. Tomin, in: Proton Transfer Reactions in the Excited Electronic States. Hydrogen Bonding and Transfer in the Excited State, K.-L. Han and G.-J. Zhao (Eds.), Vol. 2, Wiley, (2011), pp. 463–523.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of PhysicsPomeranian University in SłupskSłupskPoland

Personalised recommendations