Effect of Dopants and Surface Morphology on the Absorption Edge of ZnO Films DOPED with in, Al, and Ga

We have studied the surface morphology and intrinsic absorption spectra for zinc oxide thin fi lms with different levels of doping by indium, aluminum, or gallium, deposited by high-frequency magnetron sputtering on glass substrates. We show that as the dopant concentration increases (indium >5 wt.%, aluminum >0.3 wt.%, and gallium >2.2 wt.%) in ZnO films, a decrease may occur in the average sizes of the crystallites and accordingly there may be an increase in the concentration of structural defects in the form of intercrystallite boundaries. We have established that in ZnO films, with an increase in the indium dopant concentration from 1.7 to 6.6 wt.%, the optical bandgap width decreases from 3.30 to 3.27 eV due to the increase in the number of structural defects. We estimate the concentration of free charge carriers and show that the shift in the fundamental absorption edge in thin fi lms of ZnO:Al and ZnO:Ga as the dopant level increases is due to the Burstein–Moss effect.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    T. V. Semikina, Élektronika i Svyaz’, No. 3, 20–28 (2010).

  2. 2.

    S. Ilican, Y. Caglar, M. Caglar, and B. Demirci, J. Optoelectron. Adv. Mater., 10, 2592–2598 (2008).

    Google Scholar 

  3. 3.

    T. Minami, H. Nanto, and S. Takata, Jpn. J. Appl. Phys., 23, L280–L282 (1984).

    Article  ADS  Google Scholar 

  4. 4.

    B. H. Choi, H. B. Im, J. S. Song, and K. H. Yoon, Thin Solid Films, 193, 712–720 (1990).

    Article  ADS  Google Scholar 

  5. 5.

    M. R. Panasyuk, B. I. Turko, V. B. Kapustianyk, O. P. Stan’ko, A. V. Mandryka, R. Ya. Serkiz, and Yu. G. Dubov, Zh. Prikl. Spektrosk., 80, No. 2, 247–251 (2013).

    Google Scholar 

  6. 6.

    S. Singh, R. Nunna, C. Periasamy, and P. Chakrabarti, Int. J. Contempor. Res. Eng. Tech., 1, 114–119 (2011).

    Google Scholar 

  7. 7.

    Y. Caglar, M. Zor, M. Caglar, and S. Ilican, J. Optoelectron. Adv. Mater., 8, 1867–1873 (2006).

    Google Scholar 

  8. 8.

    B. Singh and S. Ghosh, J. Electron. Mater., 43, 3217–3221 (2014).

    Article  ADS  Google Scholar 

  9. 9.

    Z. Deng, C. Huang, J. Huang, M. Wang, H. He, H. Wang, and Y. Cao, J. Mater. Sci.: Mater. Electron., 21, 1030–1035 (2010).

    Google Scholar 

  10. 10.

    V. Khranovskyy, L. I. Kopylova, V. I. Lazorenko, G. V. Lashkarev, and V. Karpina, Phys. Chem. Solid State, 6, 406–413 (2005).

    Google Scholar 

  11. 11.

    A. Kh. Abduev, A. K. Akhmedov, A. Sh. Asvarov, A. A. Abdullaev, and S. N. Sul’yanov, Fiz. Tekh. Poluprovodn., 44, 34–38 (2010).

    Google Scholar 

  12. 12.

    G. S. Landsberg, Optics [in Russian], Nauka, Moscow (1947), pp. 515–517.

    Google Scholar 

  13. 13.

    M. S. Kim, K. G. Yim, S. Kim, G. Nam, D.-Y. Lee, J. S. Kim, J. Su Kim, and J.-Y. Leem, Acta Phys. Polon. A, 121, 217–220 (2012).

    Google Scholar 

  14. 14.

    G. Tang, H. Liu, and W. Zhang, Adv. Mater. Sci. Eng., 1–4 (2013).

  15. 15.

    A. P. Roth, J. B. Webb, and D. F. Williams, Phys. Rev. B, 25, 7836–7839 (1982).

    Article  ADS  Google Scholar 

  16. 16.

    M. Suchea, S. Christoulakis, N. Katsarakis, T. Kitsopoulos, and G. Kiriakidis, Thin Solid Films, 515, 6562–6566 (2007).

    Article  ADS  Google Scholar 

  17. 17.

    C. E. Kim, P. Moon, S. Kim, J.-M. Myoung, H. W. Jang, J. Bang, and I. Yun, Thin Solid Films, 518, 6304–6307 (2010).

    Article  ADS  Google Scholar 

  18. 18.

    I. Hamberg, C. G. Granqvist, K.-F. Berggren, B. E. Sernelius, and L. Engstrom, Phys. Rev. B, 30, 3240–3249 (1984).

    Article  ADS  Google Scholar 

  19. 19.

    M. Jun, S. Park, and J. Koh, Nanoscal. Res. Lett., 7, 639 (2012).

    Article  ADS  Google Scholar 

  20. 20.

    W. S. Baer, Phys. Rev., 154, 785–789 (1964).

    Article  ADS  Google Scholar 

  21. 21.

    N. R. Aghamalyan, E. A. Kafadaryan, R. K. Hovsepyan, and S. I. Petrosyan, Semicond. Sci. Technol., 20, 80–85 (2005).

    Article  ADS  Google Scholar 

  22. 22.

    X.-Y. Li, H.-J. Li, Z.-J. Wang, H. Xia, Z.-Y. Xiong, J.-X. Wang, and B.-C. Yang, Opt. Commun., 282, 247–252 (2009).

    Article  ADS  Google Scholar 

  23. 23.

    H. Zhou, D. Yi, Z. Yu, L. Xiao, and J. Li, Thin Solid Films, 515, 6909–6914 (2007).

    Article  ADS  Google Scholar 

  24. 24.

    S. Kim, J. Jeon, H. W. Kim, J. G. Lee, and C. Lee, Cryst. Res. Technol., 41, 1194–1197 (2006).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. I. Turko.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 1, pp. 156–159, January–February, 2015.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kapustianyk, V.B., Turko, B.I., Rudyk, V.P. et al. Effect of Dopants and Surface Morphology on the Absorption Edge of ZnO Films DOPED with in, Al, and Ga. J Appl Spectrosc 82, 153–156 (2015). https://doi.org/10.1007/s10812-015-0079-y

Download citation

Keywords

  • zinc oxide
  • doping
  • thin film
  • absorption edge
  • optical bandgap width
  • surface morphology