Skip to main content
Log in

Spectral Manifestations of Thioflavin T Aggregation

  • Published:
Journal of Applied Spectroscopy Aims and scope

Absorption, fluorescence, and fluorescence excitation spectra of thioflavin T in aqueous solutions and polyvinyl alcohol films were studied. The dye aggregated when its concentration was increased. This was accompanied by a hypsochromic shift of the absorption spectrum and a bathochromic shift of the fluorescence spectrum. It was shown that fluorescence of the probe embedded in amyloid fibrils was caused by monomers rather than dimers or other aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Naiki, K. Higuchi, M. Hosokawa, and T. Takeda, Anal. Biochem., 177, 244–249 (1989).

    Article  Google Scholar 

  2. H. LeVine, Int. J. Exp. Clin. Invest., 2, 1–6 (1995).

    Google Scholar 

  3. D. Allsop, L. Swanson, S. Moore, Y. Davies, A. York, O. M. El-Agnaf, and I. Soutar, Biochem. Biophys. Res. Commun., 285, 58–63 (2001).

    Article  Google Scholar 

  4. J. Goers, S. E. Permyakov, E. A. Permyakov, V. N. Uversky, and A. L. Fink, Biochemistry, 41, 12546–12551 (2002).

    Article  Google Scholar 

  5. A. A. Maskevich, V. I. Stsiapura, V. A. Kuzmitsky, I. M. Kuznetsova, O. I. Povarova, V. N. Uversky, and K. K. Turoverov, J. Proteome Res., 6, 1392–1401 (2007).

    Article  Google Scholar 

  6. A. A. Maskevich, S. A. Kurguzenkov, and A. V. Lavysh, Vesn. Grodzen. Dzyarzh. Univ. im. Yanki Kupaly. Ser. 2. Mat., Fiz., Infarm., Vylich. Tekh. Kirav., 151, 75–85 (2013).

    Google Scholar 

  7. V. I. Stsiapura, A. A. Maskevich, V. A. Kuzmitsky, K. K. Turoverov, and I. M. Kuznetsova, J. Phys. Chem. A, 111, 4829–4835 (2007).

    Article  Google Scholar 

  8. P. K. Singh, M. Kumbhakar, H. Pal, and S. Nath, J. Phys. Chem. B, 114, 5920–5927 (2010).

    Article  Google Scholar 

  9. N. Amdursky, R. Gepshtein, Y. Erez, and D. Huppert, J. Phys. Chem. A, 115, 2540–2548 (2011).

    Article  Google Scholar 

  10. R. O. Loutfy and B. A. Arnold, J. Phys. Chem., 86, 4205–4211 (1982).

    Article  Google Scholar 

  11. M. A. Haidekker, W. Akers, D. Lichlyter, T. P. Brady, and E. A. Theordorakis, Bioorg. Chem., 33, 415–425 (2005).

    Article  Google Scholar 

  12. E. S. Voropai, M. P. Samtsov, K. N. Kaplevskii, A. A. Maskevich, B. I. Stepuro, O. I. Povarova, I. M. Kuznetsova, K. K. Turoverov, A. L. Fink, and V. N. Uverskii, Zh. Prikl. Spektrosk., 70, No. 6, 767–773 (2003).

    Google Scholar 

  13. V. I. Stsiapura, A. A. Maskevich, V. A. Kuzmitsky, V. N. Uversky, I. M. Kuznetsova, and K. K. Turoverov, J. Phys. Chem. B, 112, 15893–15902 (2008).

    Article  Google Scholar 

  14. M. R. H. Krebs, E. H. C. Bromley, and A. M. Donald, J. Struct. Biol., 149, 30–37 (2005).

    Article  Google Scholar 

  15. M. Groenning, L. Olsen, M. van de Weert, J. M. Flink, S. Frokjaer, and F. S. Jorgensen, J. Struct. Biol., 158, 358–369 (2007).

    Article  Google Scholar 

  16. C. R. Ray and R. Ramaray, Chem. Phys. Lett., 272, 285–290 (1997).

    ADS  Google Scholar 

  17. R. Sabate, L. Rodriguez-Santiago, M. Sodupe, S. J. Saupe, and S. Ventura, Chem. Commun., 49, 5745–5747 (2013).

    Article  Google Scholar 

  18. R. Khurana, C. Coleman, C. Ionescu-Zanetti, S. A. Carter, V. Krishna, R. K. Grover, R. Roy, and S. Singh, J. Struct. Biol., 151, 229–238 (2005).

    Article  Google Scholar 

  19. M. Groenning, J. Chem. Biol., 3, 1–18 (2010).

    Article  Google Scholar 

  20. A. A. Granovsky, FireFly, version 8.0.1; http://classic.chem.msu.su/gran/firefly/index.html

  21. W. Kohn, Rev. Mod. Phys., 71, 1253–1266 (1998).

    Article  ADS  Google Scholar 

  22. S. Grimme, J. Comput. Chem., 27, 1787–1799 (2006).

    Article  Google Scholar 

  23. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 37, 785–789 (1988).

    Article  ADS  Google Scholar 

  24. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  ADS  Google Scholar 

  25. R. Shirra, Chem. Phys. Lett., 119, 463–466 (1985).

    Article  ADS  Google Scholar 

  26. P. D. Talap, Arch. Appl. Sci. Res., 4, 826–830 (2012).

    Google Scholar 

  27. J. Ferguson, A. W.-H. Mau, and J. M. Morris, Aust. J. Chem., 26, 91–102 (1973).

    Article  Google Scholar 

  28. L. V. Levshin and T. D. Slavnova, Zh. Prikl. Spektrosk., 7, No. 2, 234–239 (1967).

    Google Scholar 

  29. M. Kasha, H. R. Rawls, and M. A. El-Bayomi, Pure Appl. Chem., 11, 371–392 (1965).

    Article  Google Scholar 

  30. V. I. Yuzhakov, Usp. Khim., 61, 1114–1141 (1992).

    Article  Google Scholar 

  31. P. H. Davies and C. A. Coulson, Trans. Faraday Soc., 48, 777–789 (1952).

    Article  Google Scholar 

  32. C. Rodriguez-Rodriguez, A. Rimola, L. Rodriguez-Santiago, L. P. Ugliengo, A. Alvarez-Larena, H. Gutierrez-de-Teran, M. Sodupe, and P. Gonzalez-Duarte, Chem. Commun., 46, 1156–1158 (2010).

    Article  Google Scholar 

  33. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn., Springer Science+Business Media, New York (2006), pp. 55–60.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Maskevich.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 1, pp. 37–43, January–February, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maskevich, A.A., Lavysh, A.V., Kuznetsova, I.M. et al. Spectral Manifestations of Thioflavin T Aggregation. J Appl Spectrosc 82, 33–39 (2015). https://doi.org/10.1007/s10812-015-0060-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-015-0060-9

Keywords

Navigation