Structure and Vibrational Spectra of Uranyl Dinitrate Complexes with Water and DMSO

Structural models were designed and spectral characteristics were computed based on DFT calculations for uranyl dinitrate complexes with H2O and DMSO [UO2(NO3)2·2DMSO, UO2(NO3)2·2H2O·2DMSO, UO2(NO3)2·2H2O·4DMSO]. Vibrational IR and Raman spectra of UO2(NO3)2·2DMSO were interpreted using models for bidentate and monodentate coordination of nitrate ions to uranyl. Several spectral signatures that characterized DMSO complexation in the second coordination sphere were identified and had analytical significance.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. V. Volod′ko, A. I. Komyak, and D. S. Umreiko, Uranyl Compounds [in Russian], Vol. 1, BGU, Minsk (1981).

    Google Scholar 

  2. 2.

    C. Clavaguera-Sarrio, S. Hoyau, N. Ismail, and C. J. Marsden, J. Phys. Chem. A, 107, 4515–4525 (2003).

    Article  Google Scholar 

  3. 3.

    R. G. Denning, J. Phys. Chem. A, 111, 4125–4143 (2007).

    Article  Google Scholar 

  4. 4.

    L. R. Morss, N. M. Edelstein, and J. Fuger (Eds.), The Chemistry of the Actinide and Transactinide Elements, 3rd edn., Springer, Dordrecht [London] (2006).

  5. 5.

    A. Prestianni, L. Joubert, A. Chagnes, G. Cote, M.-N. Ohnet, C. Rabbe, M.-C. Charbonnel, and C. Adamo, J. Phys. Chem. A, 114, 10878–10884 (2010).

    Article  Google Scholar 

  6. 6.

    D. S. Umreiko, M. B. Shundalov, A. P. Zazhogin, and A. I. Komyak, Zh. Prikl. Spektrosk., 77, No. 4, 550–555 (2010).

    Google Scholar 

  7. 7.

    M. B. Shundalov, P. C. Chibirai, A. I. Komyak, A. P. Zazhogin, and D. S. Umreiko, Zh. Prikl. Spektrosk., 79, No. 2, 181–188 (2012).

    Google Scholar 

  8. 8.

    M. B. Shundalau, A. I. Komiak, A. P. Zajogin, and D. S. Umreiko, J. Spectrosc. Dyn., 3, 4 (2013).

    Google Scholar 

  9. 9.

    M. W. Schmidt, K. K. Baldrige, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem., 14, 1347–1363 (1993).

    Article  Google Scholar 

  10. 10.

    http://www.msg.ameslab.gov/GAMESS/GAMESS.html

  11. 11.

    B. M. Bode and M. S. Gordon, J. Mol. Graphics Modell., 16, 133–138 (1998).

    Article  Google Scholar 

  12. 12.

    L. J. Farrugia, J. Appl. Crystallogr., 30, 565 (1997).

    Article  Google Scholar 

  13. 13.

    L. R. Kahn, P. J. Hay, and R. D. Cowan, J. Chem. Phys., 68, 2386–2397 (1978).

    Article  ADS  Google Scholar 

  14. 14.

    T. H. Dunning, Jr., J. Chem. Phys., 90, 1007–1023 (1989).

    Article  ADS  Google Scholar 

  15. 15.

    https://bse.pnl.gov/bse/portal

  16. 16.

    D. Feller, J. Comput. Chem., 17, 1571–1586 (1996).

    Article  Google Scholar 

  17. 17.

    K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, and T. L. Windus, J. Chem. Inf. Model., 47, 1045–1052 (2007).

    Article  Google Scholar 

  18. 18.

    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  ADS  Google Scholar 

  19. 19.

    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 37, 785–789 (1988).

    Article  ADS  Google Scholar 

  20. 20.

    P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem., 98, 11623–11627 (1994).

    Article  Google Scholar 

  21. 21.

    A. P. Zazhogin, A. I. Komyak, and D. S. Umreiko, Zh. Prikl. Spektrosk., 75, No. 5, 729–732 (2008).

    Google Scholar 

  22. 22.

    L. V. Kobets, G. N. Klavsut′, and D. S. Umreiko, Zh. Neorg. Khim., 26, 173–178 (1981).

    Google Scholar 

  23. 23.

    M. Tranquille and M. T. Forel, Spectrochim. Acta, Part A, 28, 1305–1320 (1972).

    Article  ADS  Google Scholar 

  24. 24.

    W. A. de Jong, R. J. Harrison, J. A. Nichols, and D. A. Dixon, Theor. Chem. Acc., 107, 22–26 (2001).

    Article  Google Scholar 

  25. 25.

    J. R. Ferraro and A. Walker, J. Chem. Phys., 45, 550–553 (1966).

    Article  ADS  Google Scholar 

  26. 26.

    M. Tsuboi and I. C. Hisatsune, J. Chem. Phys., 57, 2087–2093 (1972).

    Article  ADS  Google Scholar 

  27. 27.

    R. M. Silverstein, F. X. Webster, and D. J. Kiemle, Spectrometric Identifi cation of Organic Compounds, John Wiley & Sons, Hoboken, NJ (2005).

    Google Scholar 

  28. 28.

    F. A. Cotton, R. Francis, and W. D. Horrocks, Jr., J. Phys. Chem., 64, 1534–1536 (1960).

    Article  Google Scholar 

  29. 29.

    H. D. Bist, J. Mol. Spectrosc., 27, 542–544 (1968).

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. B. Shundalau.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 1, pp. 29–36, January–February, 2015.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shundalau, M.B., Zazhogin, A.A., Zazhogin, A.P. et al. Structure and Vibrational Spectra of Uranyl Dinitrate Complexes with Water and DMSO. J Appl Spectrosc 82, 25–32 (2015). https://doi.org/10.1007/s10812-015-0059-2

Download citation

Keywords

  • density functional theory
  • effective core potential
  • infrared spectrum
  • Raman spectrum
  • uranyl dinitrate
  • dimethylsulfoxide
  • coordination complex