Skip to main content

Crystal Structure and Optical Properties of Lu3Al5O12:Ce3+ Obtained by a Colloidal Chemical Synthesis Method

We have used a colloidal chemical method to synthesize ultradisperse powders of lutetium aluminum garnet activated by Ce3+ ions. We used optical spectroscopy, x-ray and neutron diffraction to study their spectral luminescence and structural properties as a function of the activator concentration and the heat treatment conditions for the precursor. We have observed a change in a number of structural parameters of these powders, due to the particular details of their synthesis, which leads to distortion of the crystallographic environment of the Ce3+ ions and a change in the intensity of their luminescence. We show that among the studied powders, the highest integrated luminescence intensity is observed for an activator concentration of 1.0 at.%, and its maximum is achieved with heat treatment in the range 1200–1300°C.

This is a preview of subscription content, access via your institution.

References

  1. J. Touš, M. Horváth, L. Pína, K. Blažek, and B. Sopko, Nucl. Instrum. Method. Phys. Res. A, 591, 264–267 (2008).

    ADS  Article  Google Scholar 

  2. H. Ogino, A. Yoshikawa, M. Nikl, A. Krasnikov, K. Kamada, and T. Fukuda, J. Crystal Growth, 287, No. 2, 335–338 (2006).

    ADS  Article  Google Scholar 

  3. H. Ogino, A. Yoshikawa, M. Nikl, K. Kamada, and T. Fukuda, J. Crystal Growth, 292, No. 2, 239–242 (2006).

    ADS  Article  Google Scholar 

  4. L. Swiderski, M. Moszynski, A. Nassalski, A. Syntfeld-Kazuch, T. Szczesniak, K. Kamada, K. Tsutsumi, Y. Usuki, T. Yanagida, A. Yoshikawa, and W. Chewpraditkul, Nuclear Science Symposium Conference Record 2008, NSS’08 IEEE, 2499–2505 (2008).

  5. J. M. Nedelec, J. Nanomater. (2007); ID36392; doi:10.1115/2007/36392.

  6. E. V. Frolova and M. I. Ivanovskaya, in: Thesis Book of Defect and Diffusion Forum. Annual Retrospective VII. Switzerland, Trans. Tech. Publ. (2005), Vol. 242–244, pp. 143–158.

  7. S. E. Kichanov, E. V. Frolova, G. P. Shevchenko, D. P. Kozlenko, A. V. Belushkin, E. V. Lukin, G. E. Malashkevich, S. K. Rakhmanov, V. P. Glazkov, and B. N. Savenko, Fiz. Tverd. Tela, 55, No. 4, 745–751 (2013).

    Google Scholar 

  8. G. P. Shevchenko, E. V. Tret’yak, M. V. Korzhik, and S. K. Rakhmanov, Dokl. NAN Belarusi, 56, No. 6, 56–62 (2012).

    Google Scholar 

  9. S. H. Lee, D. S. Jung, J. M. Han, H. Y. Koo, and Y. C. Kang, J. Alloys and Compounds, 477, Nos. 1–2, 776–779 (2009).

    Article  Google Scholar 

  10. M. Nyman, L. E. Shea-Rohwer, J. E. Martin, and P. Provencio, Chem. Mater., 21, No. 8, 1536–1542 (2009).

    Article  Google Scholar 

  11. H. Yang, L. Yuan, G. Zhu, A. Yu, and H. Xu, Mater. Lett., 63, No. 27, 2271–2273 (2009).

    Article  Google Scholar 

  12. A. Purwanto, W.-N. Wang, T. Ogi, I. W. Lenggoro, E. Tanabe, and K. Okuyama, J. Alloys and Compounds, 463, 350–357 (2008).

    Article  Google Scholar 

  13. G. Xia, S. Zhou, J. Zhang, and J. Xu, J. Crystal Growth, Nos. 3–4, 357–362 (2005).

  14. C. C. Chiang, M. S. Tsai, and M. H. Hon, J. Alloys and Compounds, 431, Nos. 1–2, 298–302 (2007).

    Article  Google Scholar 

  15. V. L. Aksenov, A. M. Balagurov, V. P. Glazkov, D. P. Kozlenko, I. V. Naumov, B. N. Savenko, D. V. Sheptyakov, V. A. Somenkov, A. P. Bulkin, V. A. Kudryashev, and V. A. Trounov, Physica B, 265, Nos. 1–4, 258–262 (1999).

    ADS  Article  Google Scholar 

  16. V. B. Zlokazov and V. V. Chernyshev, J. Appl. Cryst., 25, No. 3, 447–451 (1992).

    Article  Google Scholar 

  17. S. Geller, Z. Kristallogr., 125, 1–47 (1967).

    Article  Google Scholar 

  18. V. Bachmann, C. Ronda, and A. Meijerink, Chem. Mater., 21, No. 10, 2077–2084 (2009).

    Article  Google Scholar 

  19. S. C. Huang, J. K. Wu, W.-J. Hsu, H. H. Chang, H. Y. Hung, C. L. Lin, H.-Y. Su, N. Bagkar, W.-C. Ke, H. T. Kuo, and R.-S. Liu, Int. J. Appl. Ceram. Technol., 6, No. 4, 465–469 (2009).

    Article  Google Scholar 

  20. M. V. Korzhik, The Physics of Scintillators Based on Oxygen-Containing Single Crystals [in Russian], Izdat. Tsentr Bel. Gos. Univ., Minsk (2003).

    Google Scholar 

  21. Y. Zorenko, J. A. Mares, P. Prusa, M. Nikl, V. Gorbenko, V. Savchyn, R. Kucerkova, and K. Nejezchleb, Radiat. Measur., 45, 389–391 (2010).

    Article  Google Scholar 

  22. V. V. Laguta, A. M. Slipenyuk, M. D. Glinchuk, I. P. Bykov, Y. Zorenko, M. Nikl, J. Rosa, and K. Nejezchleb, Radiat. Meas., 42, 835–838 (2007).

    Article  Google Scholar 

  23. L. J. Tian, Y. J. Sun, Y. Yu, X. G. Kong, and H. Zhang, Chem. Phys. Lett., 452, 188–192 (2008).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Tret’yak.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 81, No. 6, pp. 958–965, November–December, 2014.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Samoylenko, S.A., Tret’yak, E.V., Shevchenko, G.P. et al. Crystal Structure and Optical Properties of Lu3Al5O12:Ce3+ Obtained by a Colloidal Chemical Synthesis Method. J Appl Spectrosc 81, 1048–1055 (2015). https://doi.org/10.1007/s10812-015-0049-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-015-0049-4

Keywords

  • lutetium aluminum garnet
  • luminescence
  • neutron diffraction
  • coprecipitation method