Skip to main content
Log in

Influence of Chemical Modifiers on Ag, Cu, and Si Atomic Absorption Signals

  • Published:
Journal of Applied Spectroscopy Aims and scope

The influence of tungsten, zirconium, and palladium compounds used as chemical modifiers on the configuration of Ag, Cu, and Si analytical signals was studied. It was suggested that the analyte atomization curve parameters change as a result of matrix effects of the selected modifiers. The prospects of using these modifiers in work with Ag, Cu, and Si were discussed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. D. Ediger, At. Absorpt. Newsl., 14, 127–130 (1975).

    Google Scholar 

  2. D. L. Tsalev, V. I. Slaveykova, and P. B. Mandjukov, Spectrochim. Acta Rev., 13, 225–274 (1990).

    Google Scholar 

  3. A. B. Volynskii, Zh. Anal. Khim., 58, 1015–1032 (2003).

    Google Scholar 

  4. A. B. Volynskii, Zh. Anal. Khim., 59, 566–586 (2004).

    Google Scholar 

  5. A. B. Volynsky, Spectrochim. Acta, Part B, 53, 509–535 (1998).

    Article  ADS  Google Scholar 

  6. A. B. Volynsky, Spectrochim. Acta, Part B, 53, 607–645 (1998).

    Google Scholar 

  7. I. L. Shuttler, M. Feuerstein, and G. Schlemmer, J. Anal. At. Spectrom., 7, 1299–1301 (1992).

    Article  Google Scholar 

  8. L. Pszonicki and A. M. Essed, Chem. Anal. (Warsaw), 38, 759–770 (1993).

    Google Scholar 

  9. W. Slavin, D. C. Manning, and G. R. Carnrick, Anal. Chem., 53, 1504–1509 (1981).

    Article  Google Scholar 

  10. H. M. Ortner and E. Kantuscher, Talanta, 22, 581–586 (1975).

    Article  Google Scholar 

  11. H. Fritzche, W. Wegscheider, G. Knapp, and H. M. Ortner, Talanta, 26, 219–226 (1979).

    Article  Google Scholar 

  12. E. Bulska and W. Jedral, J. Anal. At. Spectrom., 10, 49–53 (1995).

    Article  Google Scholar 

  13. Z. Benzo, C. Cecarelli, N. Carrion, M. A. Alvarez, C. Rojas, and M. Rosso, J. Anal. At. Spectrom., 7, 1273–1280 (1992).

    Article  Google Scholar 

  14. M. R. A. Michaelis, W. Wegscheider, and H. M. Ortner, J. Anal. At. Spectrom., 3, 503–509 (1988).

    Article  Google Scholar 

  15. I. R. Gibson, S. M. Best, and W. Bonfield, J. Biomed. Mater. Res., 44, 422–428 (1999).

    Article  Google Scholar 

  16. S. R. Kim, J. H. Lee, Y. T. Kim, D. H. Riu, S. J. Jung, Y. J. Lee, S. C. Chung, and Y. H. Kim, Biomaterials, 24, 1389–1398 (2003).

    Article  Google Scholar 

  17. E. S. Zolotovitskaya, V. G. Potapova, N. N. Grebenyuk, and A. B. Blank, Zh. Anal. Khim., 50,. 998–1002 (1995).

    Google Scholar 

  18. V. G. Potapova, N. N. Grebenyuk, and A. B. Blank, Zh. Anal. Khim., 53, 875–878 (1998).

    Google Scholar 

  19. Atomic Absorption Spectroscopy: Methodical Instructions [in Russian], PO Elektron, Sumy (1994), pp. 5–20.

  20. A. N. Kulik, A. N. Buhay, Yu. V. Rogul’skii, and O. B. Lysenko, Visn. Sums’k. Derzh. Univ., 67, No. 8, 89–95 (2004).

    Google Scholar 

  21. A. N. Kulik, A. N. Buhay, Yu. V. Rogul’skii, and T. G. Kalinichenko, Zh. Prikl. Spektrosk., 76, No. 4, 593–598 (2009).

    Google Scholar 

  22. A. N. Kulik, A. N. Buhay, and Yu. V. Rogul’skii, Zh. Prikl. Spektrosk., 75, No. 1, 13–17 (2008).

    Google Scholar 

  23. D. Rojas and W. Olivares, Spectrochim. Acta, Part B, 50, 1011–1030 (1995).

    Article  ADS  Google Scholar 

  24. Yu. V. Rogul’skii, A. N. Buhay, A. A. Gudakova, and A. N. Kulik, Zh. Prikl. Spektrosk., 75, No. 3, 295–298 (2008).

    Google Scholar 

  25. E. Ganz, K. Sattler, and J. Clarke, Surf. Sci., 219, 33–67 (1989).

    Article  ADS  Google Scholar 

  26. S. J. Caroll, P. Weibel, L. Kuipers, B. Von Issendorff, and R. E. Palmer, J. Phys.: Condens. Matter, 8, 617–624 (1996).

    ADS  Google Scholar 

  27. M. Bovet, E. Boschung, J. Hayoz, T. Pillo, G. Dietler, and P. Aebi, Surf. Sci., 473, 17–24 (2001).

    Article  ADS  Google Scholar 

  28. C. R. Henry, Prog. Surf. Sci., 80, 92–116 (2005).

    Article  ADS  Google Scholar 

  29. M. Cini, M. DeCrescenzi, F. Palella, N. Motta, M. Sastry, F. Rochet, R. Pasquali, A. Balzarotti, and C. Verdozzi, Phys. Rev. B: Condens. Matter Mater. Phys., 41, No. 9, 5685–5695 (1990).

    Article  ADS  Google Scholar 

  30. N. Aoyagi, T. Ookawa, R. Ueyama, N. Ogata, and T. Ogihara, Key Eng. Mater., 248, 187–190 (2003).

    Article  Google Scholar 

  31. D. H. Kim, H. Y. Kim, J. H. Ryu, and H. M. Lee, Phys. Chem. Chem. Phys., 11, 5079–5085 (2009).

    Article  Google Scholar 

  32. H. Y. Kim, H. G. Kim, J. H. Ryu, and H. M. Lee, Phys. Rev. B: Condens. Matter Mater. Phys., 75, 212105-1–212105-4 (2007).

    ADS  Google Scholar 

  33. Yu. V. Rogul’skii, A. N. Buhay, and A. N. Kulik, Zh. Prikl. Spektrosk., 71, No. 2, 259–263 (2004).

    Google Scholar 

  34. G. Thesiamma, J. Sunny, and M. Suresh, Pramana, 65, No. 5, 793–799 (2005).

    Article  Google Scholar 

  35. I. L. Knunyants (Ed.), Chemical Encyclopedia [in Russian], Vol. 1, Sov. Entsikl., Moscow (1988), p. 423.

    Google Scholar 

  36. N. P. Lyakishev (Ed.), Phase Diagrams of Binary Metal Systems [in Russian], Vol. 1, Mashinostroenie, Moscow (1996), pp. 72, 110–112.

  37. V. I. Slaveykova, L. Lampugnani, D. L. Tsalev, L. Sabbatini, and E. DeGiglio, Spectrochim. Acta, Part B, 54, 455–467 (1999).

    Article  ADS  Google Scholar 

  38. K. M. Ortner, E. Bulska, U. Rohr, G. Schlemmer, S. Weinbruch, and B. Welz, Spectrochim. Acta, Part B, 57, 1835–1853 (2002).

    Article  ADS  Google Scholar 

  39. A. B. Volynsky, Spectrochim. Acta, Part B, 55, 103–150 (2000).

    Article  ADS  Google Scholar 

  40. I. A. Kuzovlev, Yu. N. Kuznetsov, and O. A. Sverdlina, Zavod. Lab., 39, 428–430 (1973).

    Google Scholar 

  41. A. B. Vishnikin, M. K. I. A. Al’-Shveiyat, T. V. Selivanova, and L. P. Tsyganok, Visn. Dnipropetr. Nats. Univ., 16, No. 3/1, 15–22 (2010).

    Google Scholar 

  42. C. J. Rademeyer and I. Vermaak, J. Anal. At. Spectrom., 7, 347–351 (1992).

    Article  Google Scholar 

  43. M. Resano, M. Aramend, A. B. Volynsky, and M. A. Belarra, Spectrochim. Acta, Part B, 59, 523–531 (2004).

    Article  ADS  Google Scholar 

  44. D. A. Katskov and I. L. Grinshtein, Zh. Prikl. Spektrosk., 30, No. 5, 787–793 (1979).

    Google Scholar 

  45. Y. Wang and R. A. Caruso, J. Mater. Chem., 12, 1442–1445 (2002).

    Article  Google Scholar 

  46. J. Ding, N. Zhao, C. Shi, X. Du, and J. Li, J. Alloys Compd., 425, 390–394 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kulik.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 81, No. 1, pp. 152–158, January–February, 2014.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulik, A.N., Buhay, A.N. & Illiashenko, V.Y. Influence of Chemical Modifiers on Ag, Cu, and Si Atomic Absorption Signals. J Appl Spectrosc 81, 151–157 (2014). https://doi.org/10.1007/s10812-014-9901-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-014-9901-1

Keywords

Navigation