Skip to main content
Log in

Electromagnetic Waves in Media With Correlated Inhomogeneity of Permittivity and Permeability

  • Published:
Journal of Applied Spectroscopy Aims and scope

The propagation of electromagnetic waves is examined in inhomogeneous media where the product of the permittivity and permeability is independent of position. A plasma-like frequency dispersion of the refractive index in these media is predicted. It is established that there is a cutoff frequency below which electromagnetic waves cannot be excited in these media. In general, two types of inhomogeneous waves can propagate in these media: transverse electric and transverse magnetic. The magnetic field of the transverse electric waves has a longitudinal component and is elliptically polarized in the plane formed by the wave normal and the gradient of the parameters of the medium. The electric field of the transverse magnetic waves has similar properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Hobden, Nature, 216, No. 5116, 678 (1967).

    Article  ADS  Google Scholar 

  2. M. V. Hobden, Acta Cryst., 24, No. 6, 676–680 (1968).

    Article  Google Scholar 

  3. M. V. Hobden, Nature, 220, No. 5169, 781 (1968).

    Article  ADS  Google Scholar 

  4. M. V. Hobden, Acta Cryst. A, 25, No. 6, 633–639 (1969).

    Article  Google Scholar 

  5. B. V. Bokut’, F. A. Lopashin, and A. N. Serdyukov, Opt. Spektrosk., 40, No. 2, 319–324 (1976).

    Google Scholar 

  6. F. A. Lopashin and A. N. Serdyukov, Opt. Spektrosk., 40, No. 4, 700–703 (1976).

    Google Scholar 

  7. F. I. Fedorov, Opt. Spektrosk., 2, No. 4, 514–523 (1957).

    Google Scholar 

  8. A. I. Potekhin, Emission and Propagation of Electromagnetic Waves in Anisotropic Media [in Russian], Nauka, Moscow (1971), pp. 11–12.

    Google Scholar 

  9. V. V. Gvozdev and A. N. Serdyukov, Dokl. AN BSSR, 23, No. 4, 319–324 (1979).

    Google Scholar 

  10. V. G. Veselago, Usp. Fiz. Nauk, 92, No. 3, 517–526 (1967).

    Article  Google Scholar 

  11. А. Schuster, An Introduction to the Theory of Optics, сh. 184, Edward Arnold and Company, London (1924), pp. 329–330.

  12. F. I. Fedorov and V. V. Filippov, Reflection and Refraction of Light in Transparent Crystals [in Russian], Nauka i Tekhnika, Minsk (1976) pp. 113–115.

    Google Scholar 

  13. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, сh. 80, Pergamon, New York (1984), pp. 272–276.

  14. A. N. Serdyukov, I. V. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-Anisotropic Materials: Theory and Applications, Gordon and Breach Science Publishers, Amsterdam, (2001).

    Google Scholar 

  15. C. C. Koch, I. A. Ovid’ko, S. Seal, and S. Veprek, Structural Nanocrystalline Materials Fundamentals and Applications, Cambridge University Press, New York (2007).

    Book  Google Scholar 

  16. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications, Springer, New York (2010).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Yegorov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 81, No. 1, pp. 81–87, January–February, 2014.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serdyukov, A.N., Yegorov, A.N. & Serdyukova, M.A. Electromagnetic Waves in Media With Correlated Inhomogeneity of Permittivity and Permeability. J Appl Spectrosc 81, 79–86 (2014). https://doi.org/10.1007/s10812-014-9890-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-014-9890-0

Keywords

Navigation