Skip to main content
Log in

Synthesis of Bimetallic Nanoalloy Layer using Simultaneous Laser Ablation of Monometallic Targets

  • Published:
Journal of Applied Spectroscopy Aims and scope

It is proposed to synthesize silver-gold alloy nanoparticles by direct pulsed laser ablation of joined Ag and Au monometallic targets. To avoid utilizing a high-vacuum chamber, this pulsed laser-assisted technique is performed in an isolated beaker containing pure helium gas at atmospheric pressure. The structure and formation mechanism of the homogeneous Ag–Au nanoalloy particles on the Si substrate surface are discussed. Here, as in other works, the formation of the Ag–Au alloy nanoparticles was verified by the appearance of a surface plasmon absorption maximum at 442 nm between the surface plasmon resonance peaks of the corresponding monometallic particles, and by results of X-ray photoelectron spectroscopy. Based on data of UV-visible spectroscopy and energy dispersive X-ray analysis, the atomic contents of Ag and Au are determined in the nanoalloy particles. Transmission electron microscopy (TEM) showed the synthesized semispherical nanoalloy particles, 5–35 nm in diameter, with a narrow particle size distribution. The related morphology, structure, and chemical composition are also investigated using atomic force microscopy, lateral force microscopy, and X-ray diffraction. The suggested approach is affordable, fast, and inexpensive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1 . M. Zhou, S. Chen, S. Zhao, H. Ma, Phys. E: Low-dimens. Syst. Nanostruct., 33 , 28–34 (2006).

    Article  ADS  Google Scholar 

  2. M. Daniel, D. Astruc, Chem. Rev., 104, 293–346 (2004).

    Article  Google Scholar 

  3. P. Zhang, T. K. Sham, Phys. Rev. Lett., 90, 245502–245506 (2003).

    Article  ADS  Google Scholar 

  4. B. Joseph, S. Mohapatra, H. P. Lenka, P. K. Kuiri, D. P. Mahapatra, Thin Solid Films, 492, 35–40 (2005).

    Article  ADS  Google Scholar 

  5. Y. Suzuki, H. Makanae, H. Kudo, T. Miyanaga, T. Nanke, T. Kobayashi, Appl. Phys. A: Mater. Sci. Process., 78, 335–338 (2004).

    Article  ADS  Google Scholar 

  6. G. A Shafeev, E. Freysz, F. Bozon-Verduraz, Appl. Phys. A: Mater. Sci. Process., 78, 307–309 (2004).

    Article  ADS  Google Scholar 

  7. Mansoureh Ganjali, Monireh Ganjali, S. Khoby, M. A. Meshkot, Nano-Micro Lett., 3, 256–263 (2011).

    Google Scholar 

  8. J. S. Henley, C. P. Watts, N. Mureau, S. Ravi, P. Silva, Appl. Phys. A: Mater. Sci. Process., 93, 875–879 (2008).

    Article  ADS  Google Scholar 

  9. S. Link, C. Burda, Z. L. Wang, M. A. El-Sayed, J. Chem. Phys., 111, 1255–1264 (1999).

    Article  ADS  Google Scholar 

  10. H. Z. Shi, L. D. Zhang, W. P. Cai, J. Appl. Phys., 87, 1572–1574 (2000).

    Article  ADS  Google Scholar 

  11. Y. Chen, C. Yeh, Chem. Commun., 4, 371–372 (2001).

    Article  Google Scholar 

  12. S. V.NagenderNaidu, C. R. Hauska, J. Phys., 42, 4971–4975 (1971).

    Google Scholar 

  13. R. Touroude, P. Girard, G. Maire, J. Kizling, M. Boutonet-Kisling, P. Stenius, Colloids Surf., 67, 9–12 (1992).

    Article  Google Scholar 

  14. M. P. Mallin, C. J. Murphy, Nano Lett., 2, 1235–1237 (2002).

    Article  ADS  Google Scholar 

  15. A. T. Izgaliev, A. V. Simakin, G. A. Shafeev, B. F. Verduraz, Chem. Phys. Lett., 390, 467–471 (2004).

    Article  ADS  Google Scholar 

  16. P. Schaaf, Laser Processing of Materials: Fundamentals, Applications and Developments, Springer, Berlin (2010).

  17. S. Link, Z. L. Wang, M. A. El-Sayed, J. Phys. Chem. B, 103, 3529–3533 (1999).

    Article  Google Scholar 

  18. S. Besner, M. Meunier, J. Phys. Chem. C, 114, 10403–10409 (2010).

    Article  Google Scholar 

  19. Yuliati Herbani, Takahiro Nakamura, Shunichi Sato, J. Nanomater., 154210-1-9 (2010).

  20. P. Jafarkhani, M. J. Torkamanyl, S. Dadras, A. Chehrghani, J. Sabbaghzadeh, Nanotechnology, 22, 235703-1–7 (2011).

    Article  Google Scholar 

  21. A. Shah, L. Rahman, R. Qureshi, Z. Rehman, Rev. Adv. Mater. Sci., 30, 133–149 (2012).

    Google Scholar 

  22. D. Alloyeau, C. Langlois, C. Ricolleau, Y. Le Bouar, A. Loiseau, Nanotechnology, 18, 375301-1–6 (2007).

    Article  Google Scholar 

  23. C. Langlois, D. Alloyeau, Y. Le Bouar, A. Loiseau, T. Oikawa, C. Mottet, C. Ricolleau, Faraday Disc., 138, 375–391 (2008).

    Article  ADS  Google Scholar 

  24. D. Alloyeau, C. Ricolleau, T. Oikawa, C. Langlois, A. Loiseau, Y. Le Bouar, Ultramicroscopy, 108, 656–662 (2008).

    Article  Google Scholar 

  25. D. Alloyeau, T. Oikawa, J. Nelayah, G. Wang, C. Ricolleau, Appl. Phys. Lett., 101, 121920-1–4 (2012).

    Article  Google Scholar 

  26. R. E. Russo, X. Mao, H. Liu, J. Gonzalez, S. S. Mao, Talanta, 57, No. 3, 425–451 (2002).

    Article  Google Scholar 

  27. H. C. Liu, X. L. Mao, J. H. Yoo, R. E. Russo, Spectrochim. Acta, B, 54, 1607 (1999).

    Google Scholar 

  28. C. R. Phipps, R.W. Dreyfus, In "Laser Ionization Mass Analysis," Eds. A. Vertes, R. Gijbels, F. Adams, John Wiley & Son, New York (1993).

  29. H. Wada, T. Kamijoh, Jpn. J. Appl. Phys., 35, L648–L650 (1996).

    Article  ADS  Google Scholar 

  30. J. Bischof, Metallische Dünnfilmschmelzen nach Pulslaser-Bestrahlung: Phasenumwandlungen und Instabilitäten, UFO Dis., ISBN 3-930803-12-7 (1997).

  31. H. M. Chen, R. S. Liu, L.-Y. Jang, J.-F. Lee, S. F. Hu, Chem. Phys. Lett., 421, 118–123 (2006).

    Article  ADS  Google Scholar 

  32. N. V. Tarasenko, In "Pulsed Laser Ablation Synthesis and Modification of Composite Nanoparticles in Liquids," Ed. G. W. Yang, Pan Stanford Publishing, Singapore, 709 (2012).

  33. G. Compagnini, E. Messina, O. Puglisi, V. Nicolosi, Appl. Surf. Sci., 254, 1007–1011 (2007).

    Article  ADS  Google Scholar 

  34. J. F. Sánchez-Ramírez, U. Pal, L. Nolasco-Hernández, J. Mendoza-Álvarez, J. A. Pescador-Rojas, J. Nano mater., 2008, 1–10 (2008).

    Google Scholar 

  35. P. V. Kazakevich, V. V. Simakin, V. V. Voronov, G. A. Shafeev, Appl. Surf. Sci., 252, 4373–4380 (2006).

    Article  ADS  Google Scholar 

  36. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, Chem. Rev., 99, 2957–2975 (1999).

    Article  Google Scholar 

  37. J. M. Mclellan, Z.-Y. Li, A. Siekkinen, Y. Xia, Nano Lett., 7, 1013—1017 (2007).

    Article  ADS  Google Scholar 

  38. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, Phys. Rev. Lett., 78, 1667–1670 (1997).

    Article  ADS  Google Scholar 

  39. D. A. Bulushev, I. Yuranov, E. I. Suvorova, P. A. Buffat, L. Kiwi-Minsker, J. Catal., 224, 8–17 (2004).

    Article  Google Scholar 

  40. E. Cattaruzza, G. Battaglin, P. Canton, C. Sada, J. Non-Cryst. Solids, 351, 1932–1936 (2005).

    Article  ADS  Google Scholar 

  41. A. Q. Wang, J. H. Liu, S. D. Lin, T. S. Lin, C. Y. Mou, J. Catal., 233, 186–197 (2005).

    Article  Google Scholar 

  42. A. Babapour, O. Akhavan, R. Azimirad, A. Z. Moshfegh, Nanotechnology, 17, 763–771 (2006).

    Article  ADS  Google Scholar 

  43. P. Sangpour, G. R. Jafari, O. Akhavan, A. Z. Moshfegh, M. R. Rahimi Tabar, Phys. Rev. B, 71, 155423-1–8 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoureh Ganjali.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 80, No. 6, p. 967, November–December, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganjali, M., Ganjali, M. & Sangpour, P. Synthesis of Bimetallic Nanoalloy Layer using Simultaneous Laser Ablation of Monometallic Targets. J Appl Spectrosc 80, 991–997 (2014). https://doi.org/10.1007/s10812-014-9877-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-014-9877-x

Keywords

Navigation