Skip to main content
Log in

Application of the Modified Urey–Bradley–Shimanouchi Force field of α-D-Glucopyranose and β-D-Fructopyranose to Predict the Vibrational Spectra of Disaccharides

  • Published:
Journal of Applied Spectroscopy Aims and scope

The vibrational frequencies of the disaccharide isomaltulose in the solid state have been reproduced in the 50–4000 cm−1 range. The modified Urey–Bradley–Shimanouchi force field was used, combined with an inter molecular potential energy function that includes van der Waals interactions, electrostatic terms, and an explicit hydrogen bond function. The force constants previously established for α-D-glucopyranose and β-D-fructo pyranose, as well as the crystallographic data of isomaltulose monohydrate, were the starting parameters for the present work. The vibrational frequencies of isomaltulose were calculated and assigned to the experimentally observed vibrational frequencies. Overall, there was good agreement between the observed and calculated frequencies with an average error of 4 cm−1. Furthermore, good agreement was found between our calculated results and the vibration spectra of other disaccharides and monosaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Zhbankov, Infrared Spectra of Cellulose and Its Derivatives, Consultants Bureau, New York (1966).

    Google Scholar 

  2. R. G. Zhbankov, Infrared Spectra and Structure of Carbohydrates (in Russian), Nauka i Tekhnika, Minsk (1972).

    Google Scholar 

  3. M. Mathlouthi and J. L. Koenig, Adv. Carbohydr. Chem. Bi., 44, 7–89 (1986).

    Article  Google Scholar 

  4. M. Dauchez, P. Derreumaux, P. Lagant, G. Vergoten, M. Sekkal and P. Legrand, Spectrochim. Acta A, 50, 87–104 (1994).

    Article  ADS  Google Scholar 

  5. M. Dauchez, P. Lagant, P. Derreumaux, G. Vergoten, M. Sekkal and B. Sombret, Spectrochim. Acta A, 50, 105–118 (1994).

    Article  ADS  Google Scholar 

  6. P. Derreumaux and G. Vergoten, J. Chem. Phys., 102, 8586–8605 (1995).

    Article  ADS  Google Scholar 

  7. I. N. Taleb-Mokhtari, M. Sekkal-Rahal and G. Vergoten, Spectrochim. Acta A, 59, 607–616 (2003).

    Article  ADS  Google Scholar 

  8. M. Dauchez, P. Derreumaux and G. Vergoten, J. Comput. Chem., 14, 263–277 (1992).

    Article  Google Scholar 

  9. M. Sekkal, P. Legrand, G. Vergoten and M. Dauchez, Spectrochim. Acta A, 48, 959–973 (1992).

    Article  ADS  Google Scholar 

  10. C. Reguieg, N. Yousfi and M. Sekkal-Rahal, Spectrochim. Acta A, 67, 966–975 (2007).

    Article  ADS  Google Scholar 

  11. N. Benbrahim, M. Sekkal-Rahal and G. Vergoten, Spectrochim. Acta A, 58, 3021–3031 (2002).

    Article  ADS  Google Scholar 

  12. N. Sekkal, I. N. Taleb-Mokhtari, M. Sekkal-Rahal, P. Bleckmann and G. Vergoten, Spectrochim. Acta A, 59, 3883–2896 (2003).

    Article  Google Scholar 

  13. A. Mahdad-Benzerdjeb, I. N. Taleb-Mokhtari and M. Sekkal-Rahal, Spectrochim. Acta A, 68, 284–299 (2007).

    Article  ADS  Google Scholar 

  14. A. T. Tu, Raman Spectroscopy in Biology, Principle and Applications, Wiley (1982).

  15. W. Szarek, S. Korppi-Tammolas, H. Shurvell, V. Smith and O. Martin, Can. J. Chem., 62, 1512–1518 (1984).

    Article  Google Scholar 

  16. E. Wilson, J. Decius and P. Cross, In Molecular Vibrations, McGraw–Hill, New York (1958).

    Google Scholar 

  17. T. Shimanouchi, Pure Appl. Chem., 7, 131–146 (1963).

    Article  Google Scholar 

  18. P. Derreumaux, G. Vergoten and P. Langant, J. Comput. Chem., 11, 560–568 (1990).

    Article  Google Scholar 

  19. V. W. Dreissig and P. Luger, Acta Crystallogr. B, 29, 514–521 (1973).

    Article  Google Scholar 

  20. T. Miyazawa, J. Chem. Phys., 29, 246–246 (1958).

    Article  ADS  Google Scholar 

  21. T. Shimanouchi, Physical Chemistry. An Advanced Treatise, Vol. IV, Academic Press, New York, 233–305 (1970).

  22. J. P. Huvenne, Doctoral Thesis, Lille (1979).

  23. H. Takeuchi, PhD Thesis, Tokyo (1975).

  24. S. Califano and B. Oville-Thomas, Vibrational Spectroscopy. Modern Trends, Elsevier, Amsterdam (1977).

  25. V. M. Andrianov, R. Zhbankov and V. G. Daschevskii, Zh. Strukt. Khim., 21, 35–41 (1980).

    Google Scholar 

  26. H. Susi and J. S. Ard, Carbohydr. Res., 37, 351–354 (1974).

    Article  Google Scholar 

  27. V. M. Tul’chinsky, S. E. Zurabyan, K. A. Asankoshoev, G. A. Kogan and Y. Y. Khorlin, Carbohydr. Res., 51, 1–8 (1976).

    Article  Google Scholar 

  28. D. K. Buslov, N. A. Nikonenko, N. I. Sushko and R. G. Zhbankov, Spectrochim. Acta A, 55, 229–238 (1999).

    Article  ADS  Google Scholar 

  29. M. V. Korolevich, R. G. Zhbankov and V. V. Svichik, J. Mol. Struct., 220, 301–313 (1990).

    Article  ADS  Google Scholar 

  30. M. Sekkal, V. Dincq, P. Legrand and J. P. Huvenne, J. Mol. Struct., 349, 349–352 (1995).

    Article  ADS  Google Scholar 

  31. M. Kacurakova and M. Mathlouthi, Carbohydr. Res., 284, 145–157 (1996).

    Article  Google Scholar 

  32. T. R. Gilson and P. J. Hendra, Laser Raman Spectroscopy. Wiley, New York (1970).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Gafour.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 80, No. 6, p. 965, November–December, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gafour, H.M., Sekkal-Rahal, M. & Sail, K. Application of the Modified Urey–Bradley–Shimanouchi Force field of α-D-Glucopyranose and β-D-Fructopyranose to Predict the Vibrational Spectra of Disaccharides. J Appl Spectrosc 80, 962–970 (2014). https://doi.org/10.1007/s10812-014-9874-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-014-9874-0

Keywords

Navigation