Skip to main content
Log in

A Comparative Study between Carcinoma and Sarcoma Using Raman Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

The purpose of this study was to find discriminating Raman spectral features between two major types of cancer, i.e., carcinoma and sarcoma. To this end, Raman spectra from adenocarcinoma, liposarcoma and fibrosarcoma samples were compared. A Raman system was used for the tissue Raman spectroscopic measurements at 785-nm laser excitation. After pre-processings, the Raman spectra were investigated, in major bands associated with protein and lipids, in the adenocarcinoma, liposarcoma, and fibrosarcoma groups. Principal component analysis and nonnegative matrix factorization were performed for finding most significant features in discriminating the spectra of carcinoma from those of sarcoma samples. The findings of this study show that the lipid content in the sarcoma samples decreases compared with the carcinoma samples. The achieved accuracy in discriminating carcinoma from sarcoma by linear discriminant analysis is 93.75 % and 90.63 % using the first nine principal components and nonnegative matrix factorization analysis, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. R. Lewis, Handbook of Raman Spectroscopy: from the Research Laboratory to the Process Line, CRC Press (2001).

  2. J. Twardowski, P. Anzenbacher, Raman and IR Spectroscopy in Biology and Biochemistry, Prentice Hall (1994).

  3. Q. Tu, C. Chang, Nanomedicine, 8, 545–558 (2012).

    Article  Google Scholar 

  4. N. Stone, C. Kendall, N. Shepherd, P. Crow, H. Barr, J. Raman Spectrosc., 33, 564–573 (2002).

    Article  ADS  Google Scholar 

  5. P. Crow, N. Stone, C. A. Kendall, R. A. Persad, M. P. J. Wright, BJU Int., 92, 400–407 (2003).

    Article  Google Scholar 

  6. J. W. Tunnell, A. S. Haka, S. A. McGee, J. Mirkovic, M. S. Feld, Tech. Gastrointest. Endosc., 5, 65–73 (2003).

    Article  Google Scholar 

  7. I. Georgakoudi, E. E. Sheets, M. G. Müller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, M. S. Feld, Am. J. Obstet. Gynec., 186 (2002).

  8. T. Vo-Dinh, Biomedical Photonics Handbook, CRC Press (2002).

  9. Y. Zhou, C.-H. Liu, Y. Sun, Y. Pu, S. Boydston-White, Y. Liu, R. R. Alfano, J. Biomed. Opt., 17, 116021 (1–11) (2012).

    Google Scholar 

  10. B. Bodanese, F. C. L. Silveira, R. A. Z. Ngaro, M. T. T. Pacheco, C. A. Pasqualucci, L. Silveira, Photomed. Laser Surg., 30, 381–387 (2012).

    Article  Google Scholar 

  11. Z. Zhuang, N. Li, Z. Guo, M. Zhu, K. Xiong, S. Chen, J. Biomed. Opt., 18, 031103 (1–12) (2013).

  12. L. Raniero, R. A. Canevari, L. N. Z. Ramalho, F. S. Ramalho, E. A. P. dos Santos, R. A. Bitar, K. J. Jalkanen, H. S. Martinho, A. A. Martin, Theor. Chim. Acta, 130, 1239–1247 (2011).

    Article  Google Scholar 

  13. J. Zhao, H. Lui, D. I. McLean, H. Zeng, in New Developments in Biomedical Engineering, Ed. Domenico Campolo, In Tech., Pt. 24, 455–474 (2010).

  14. C. D. Callery, P. P. Rosen, D. W. Kinne, Ann. Surg., 201, 527 (1985).

    Article  Google Scholar 

  15. R. M. Austin, W. B. Dupree, Human Pathol., 17, 906–913 (1986).

    Article  Google Scholar 

  16. S. Ciatto, R. Bonardi, L. Cataliotti, G. Cardona, Neoplasma, 39, 375 (1992).

    Google Scholar 

  17. B. C. Elson, D. M. Ikeda, I. Andersson, C. Wattsgard, Am. J. Roentgenol., 158, 993–995 (1992).

    Article  Google Scholar 

  18. S. Fendel, B. Schrader, Fresenius J. Anal. Chem., 360, 609–613 (1998).

    Article  Google Scholar 

  19. C. Krafft, T. Knetschke, A. Siegner, R. H. W. Funk, R. Salzer, Vibrat. Spectrosc., 32, 75–83 (2003).

    Article  Google Scholar 

  20. K. E. Hamden, B. A. Bryan, P. W. Ford, C. Xie, Y.-Q. Li, S. M. Akula, J. Virol. Methods, 129, 145–151 (2005).

    Google Scholar 

  21. H. Krishna, S. K. Majumder, P. K. Gupta, J. Raman Spectrosc., 43, 1884–1894 (2012).

    Article  ADS  Google Scholar 

  22. C.-J. Lin, Neural Comput., 19, 2756–2779 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  23. M. G. N. Shim, Medical Raman Spectroscopy, in vivo and ex vivo Tissue Analysis for Cancer Diagnosis, Toronto (2001).

  24. M. Moreno, L. Raniero, E. l. A. n. L. Arisawa, A. M. E. Santo, E. A. P. Santos, R. A. Bitar, A. A. O. Martin, Theor. Chem. Acc., 125, 329–334 (2009).

    Article  Google Scholar 

  25. S.-X. Li, Q.-Y. Chen, Y.-J. Zhang, Z.-M. Liu, H.-L. Xiong, Z.-Y. Guo, H.-Q. Mai, S.-H. Liu, J. Biomed. Opt., 17, 125003 (1–14) (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Miran Baygi.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 80, No. 6, pp. 901–906, November–December, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehghani-Bidgoli, Z., Baygi, M.H.M., Kabir, E. et al. A Comparative Study between Carcinoma and Sarcoma Using Raman Spectroscopy. J Appl Spectrosc 80, 893–898 (2014). https://doi.org/10.1007/s10812-014-9861-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-014-9861-5

Keywords

Navigation