Quantum Chemical Analysis of Uranium Trioxide Conformers

The shapes of two hypothetical conformers of uranium trioxide UO3 were analyzed by DFT calculations and the structures of localized molecular orbitals (LMOs). It was shown that differences between the Y- and T-shapes of UO3 were due mainly to the different contributions of the U 6pz- and 6px-orbitals to the corresponding LMOs and to the formation of specifi cally shaped regions of higher electron density in the vicinity of this atom.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P. V. R. Schleyer, E. U. Wüerthwein, E. Kaufmann, T. Clark, and J. A. Pople, J. Am. Chem. Soc., 105, 5930–5932 (1983).

    Article  Google Scholar 

  2. 2.

    H. Kudo, Nature, 355, 432–434 (1992).

    ADS  Article  Google Scholar 

  3. 3.

    W. Zhizhong, Z. Xiange, and T. Auchin, J. Mol. Struct.: THEOCHEM, 453, 225–231 (1998).

    Article  Google Scholar 

  4. 4.

    Z.-W. Fu, L.-N. Zhang, Q.-Z. Qiu, Y.-H. Zhang, X.-K. Zeng, H. Cheng, R.-B. Huang, and L.-S. Zheng, J. Phys. Chem. A, 104, 2980–2984 (2000).

    Article  Google Scholar 

  5. 5.

    L. Andrews, B. Liang, J. Li, and B. E. Bursten, J. Am. Chem. Soc., 125, 3126–3139 (2003).

    Article  Google Scholar 

  6. 6.

    L. Gagliardi and B. O. Roos, Nature, 433, 848–851 (2005).

    ADS  Article  Google Scholar 

  7. 7.

    S. D. Gabelnick, G. T. Reedy, and M. G. Chasanov, J. Chem. Phys., 58, 4468–4475 (1973).

    ADS  Article  Google Scholar 

  8. 8.

    S. D. Gabelnick, G. T. Reedy, and M. G. Chasanov, J. Chem. Phys., 59, 6397–6404 (1973).

    ADS  Article  Google Scholar 

  9. 9.

    D. W. Green, G. T. Reedy, and S. D. Gabelnick, J. Chem. Phys., 73, 4207–4216 (1980).

    ADS  Article  Google Scholar 

  10. 10.

    R. D. Hunt and L. Andrews, J. Chem. Phys., 98, 3690–3696 (1993).

    ADS  Article  Google Scholar 

  11. 11.

    M. Zhou, L. Andrews, N. Ismail, and C. Marsden, J. Phys. Chem. A, 104, 5495–5502 (2000).

    Article  Google Scholar 

  12. 12.

    P. Li, T.-T. Jia, T. Gao, and G. Li, Chin. Phys. B, 21, 043301 (2012).

    ADS  Article  Google Scholar 

  13. 13.

    R. G. Denning, J. Phys. Chem. A, 111, 4125–4143 (2007).

    Article  Google Scholar 

  14. 14.

    M. B. Shundalau, A. P. Zajogin, A. I. Komiak, A. A. Sokolsky, and D. S. Umreiko, J. Spectrosc. Dyn., 2, 19 (2012).

    Google Scholar 

  15. 15.

    O. Chalvet, R. Daudel, S. Diner, and J. P. Malrieu, Localization and Delocalization in Quantum Chemistry, Dordrecht, Holland (1975).

    Google Scholar 

  16. 16.

    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem., 14, 1347–1363 (1993).

    Article  Google Scholar 

  17. 17.

    http://www.msg.ameslab.gov/GAMESS/GAMESS.html

  18. 18.

    B. M. Bode and M. S. Gordon, J. Mol. Graphics Modell., 16, 133–138 (1998).

    Article  Google Scholar 

  19. 19.

    L. J. Farrugia, J. Appl. Crystallogr., 30, 565 (1997).

    Article  Google Scholar 

  20. 20.

    P. J. Hay and R. L. Martin, J. Chem. Phys., 109, 3875–3881 (1998).

    ADS  Article  Google Scholar 

  21. 21.

    T. H. Dunning, Jr., J. Chem. Phys., 90, 1007–1023 (1989).

    ADS  Article  Google Scholar 

  22. 22.

    https://bse.pnl.gov/bse/portal

  23. 23.

    D. Feller, J. Comput. Chem., 17, 1571–1586 (1996).

    Article  Google Scholar 

  24. 24.

    K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, and T. L. Windus, J. Chem. Inf. Model., 47, 1045–1052 (2007).

    Article  Google Scholar 

  25. 25.

    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    ADS  Article  Google Scholar 

  26. 26.

    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 37, 785–789 (1988).

    Google Scholar 

  27. 27.

    P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem., 98, 11623–11627 (1994).

    Article  Google Scholar 

  28. 28.

    M. B. Shundalau, A. I. Komyak, A. P. Zazhogin, and D. S. Umreiko, Zh. Prikl. Spektrosk., 79, 27–36 (2012).

    Google Scholar 

  29. 29.

    M. B. Shundalau, A. I. Komiak, A. P. Zajogin, and D. S. Umreiko, J. Spectrosc. Dyn., 3, 4 (2013).

    Google Scholar 

  30. 30.

    C. Edmiston and K. Ruedenberg, Rev. Mod. Phys., 35, 457–464 (1963).

    ADS  Article  MATH  Google Scholar 

  31. 31.

    P. Pyykkö, J. Li, and N. Runeberg, J. Phys. Chem., 98, 4809–4813 (1994).

    Article  Google Scholar 

  32. 32.

    J. C. Eisenstein and M. H. L. Pryce, Proc. R. Soc. London, Ser. A, 229, 20–38 (1955).

    Google Scholar 

  33. 33.

    S. P. McGlynn and J. K. Smith, J. Mol. Spectrosc., 6, 164–187 (1961).

    ADS  Article  Google Scholar 

  34. 34.

    P. Pyykkö and L. L. Lohr, Jr., Inorg. Chem., 20, 1950–1959 (1981).

    Article  Google Scholar 

  35. 35.

    G. Schreckenbach, P. J. Hay, and R. L. Martin, Inorg. Chem., 37, 4442–4452 (1998).

    Article  Google Scholar 

  36. 36.

    N. Ismail, J.-L. Heully, T. Saue, J.-P. Daudey, and C. J. Marsden, Chem. Phys. Lett., 300, 296–302 (1999).

    ADS  Article  Google Scholar 

  37. 37.

    K. G. Dyall, Mol. Phys., 96, 511–518 (1999).

    ADS  Article  Google Scholar 

  38. 38.

    W. A. de Jong, R. J. Harrison, J. A. Nichols, and D. A. Dixon, Theor. Chem. Acc., 107, 22–26 (2001).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. B. Shundalau.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 80, No. 6, pp. 817–822, November–December, 2013.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shundalau, M.B., Umreiko, D.S. Quantum Chemical Analysis of Uranium Trioxide Conformers. J Appl Spectrosc 80, 807–812 (2014). https://doi.org/10.1007/s10812-014-9848-2

Download citation

Keywords

  • ab initio calculation
  • density functional theory
  • effective core potential
  • uranium trioxide
  • localized molecular orbitals