Modeling IR spectra of uranium monoxide clusters

Structural models were designed and spectral characteristics were computed based on DFT calculations of uranium monoxide clusters (UO)2, (UO)4, (UO)6, and (UO)9. Spectral features that were characteristic of the cluster formation process were identified. The uranium oxidation state was close to 3 in the clusters (UO)2, (UO)4, and (UO)6. The vibrational frequencies decreased monotonically in the sequence (UO)2 → (UO)4 → (UO)6 because of decreasing electron density in each of the UO bonds with the growing complexity of the clusters. The uranium oxidation state was close to 4 in the cluster (UO)9. This led to a strengthening of the bonds and an increase in the frequency of the strongest band in the IR spectrum.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. R. Morss, N. M. Edelstein, and J. Fuger (Eds.), The Chemistry of the Actinide and Transactinide Elements, 4th edn., Springer, Dordrecht (2006).

    Google Scholar 

  2. 2.

    V. F. Petrunin and A. V. Fedotov, Scientific Session of MIFI [in Russian], Moscow, 9, 198–199 (2006).

  3. 3.

    S. D. Gabelnick, G. T. Reedy, and M. G. Chasanov, J. Chem. Phys., 58, 4468–4475 (1973).

    ADS  Article  Google Scholar 

  4. 4.

    S. D. Gabelnick, G. T. Reedy, and M. G. Chasanov, J. Chem. Phys., 59, 6397–6404 (1973).

    ADS  Article  Google Scholar 

  5. 5.

    R. D. Hunt and L. Andrews, J. Chem. Phys., 98, 3690–3696 (1993).

    ADS  Article  Google Scholar 

  6. 6.

    M. Zhou, L. Andrews, N. Ismail, and C. Marsden, J. Phys. Chem. A, 104, 5495–5502 (2000).

    Article  Google Scholar 

  7. 7.

    A. Barnes, W. J. Orville-Thomas, R. Gaufres, and A. Muller (Eds.), Matrix Isolation Spectroscopy, Springer (1981).

  8. 8.

    J. Li, B. E. Bursten, L. Andrews, and C. J. Marsden, J. Am. Chem. Soc., 126, 3424–3425 (2004).

    Article  Google Scholar 

  9. 9.

    J. Han, V. Goncharov, L. A. Kaledin, A. V. Komissarov, and M. C. Heaven, J. Chem. Phys., 120, 5155–5163 (2004).

    ADS  Article  Google Scholar 

  10. 10.

    L. Gagliardi, M. C. Heaven, J. W. Krogh, and B. O. Roos, J. Am. Chem. Soc., 127, 86–91 (2005).

    Article  Google Scholar 

  11. 11.

    P. Li, T.-T. Jia, T. Gao, and G. Li, Chin. Phys. B, 21, 043301 (2012).

    ADS  Article  Google Scholar 

  12. 12.

    M. B. Shundalau, A. P. Zajogin, A. I. Komiak, A. A. Sokolsky, and D. S. Umreiko, J. Spectrosc. Dyn., 2, 19 (2012).

    Google Scholar 

  13. 13.

    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem., 14, 1347–1363 (1993).

    Article  Google Scholar 

  14. 14.

    http://www.msg.ameslab.gov/GAMESS.html

  15. 15.

    B. M. Bode and M. S. Gordon, J. Mol. Graphics Modell., 16, 133–138 (1998).

    Article  Google Scholar 

  16. 16.

    L. J. Farrugia, J. Appl. Crystallogr., 30, 565 (1997).

    Article  Google Scholar 

  17. 17.

    L. R. Kahn, P. J. Hay, and R. D. Cowan, J. Chem. Phys., 68, 2386–2397 (1978).

    ADS  Article  Google Scholar 

  18. 18.

    T. H. Dunning, Jr., J. Chem. Phys., 90, 1007–1023 (1989).

    ADS  Article  Google Scholar 

  19. 19.

    https://bse.pnl.gov/bse/portal

  20. 20.

    D. Feller, J. Comput. Chem., 17, 1571–1586 (1996).

    Google Scholar 

  21. 21.

    K. L. Schuchardt, B. T. Didier, T. Elsethagan, L. Sun, V. Gurumoorthi, J. Chase, J. Li, and T. L. Windus, J. Chem. Inf. Model., 47, 1045–1052 (2007).

    Article  Google Scholar 

  22. 22.

    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    ADS  Article  Google Scholar 

  23. 23.

    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 37, 785–789 (1988).

    ADS  Article  Google Scholar 

  24. 24.

    P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem., 98, 11623–11627 (1994).

    Article  Google Scholar 

  25. 25.

    L. A. Kaldein and M. C. Heaven, J. Mol. Spectrosc., 185, 1–7 (1997).

    ADS  Article  Google Scholar 

  26. 26.

    M. B. Shundalov, A. I. Komyak, A. P. Zazhogin, and D. S. Umreiko, Zh. Prikl. Spektrosk., 79, No. 1, 27–36 (2012).

    Google Scholar 

  27. 27.

    M. B. Shundalau, A. I. Komiak, A. P. Zajogin, and D. S. Umreiko, J. Spectrosc. Dyn., 3, 4 (2013).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. B. Shundalau.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 80, No. 4, pp. 545–550, July–August, 2013.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shundalau, M.B., Umreiko, D.S., Zazhogin, A.P. et al. Modeling IR spectra of uranium monoxide clusters. J Appl Spectrosc 80, 530–535 (2013). https://doi.org/10.1007/s10812-013-9800-x

Download citation

Keywords

  • ab initio calculation
  • density functional theory
  • effective core potential
  • infrared spectrum
  • uranium monoxide
  • molecular cluster