Influence of fluorination on UV spectra of polyurethane structural fragments

Results of TDDFT calculations of the characteristics for excited singlet states of fluorinated urethanes containing from one to six fluorine atoms were presented. The influence of the number and location of the fluorine atoms in the urethane structure on the formation of its UV absorption spectrum was analyzed. It was established that fluorination of a phenyl group in the ortho-positions led to steric hindrance in the urethane structure and to rotation of the urethane group by a significant angle (of about 20°). The rotation angle of the urethane group could reach 60° and more with additional fluorination of the amine. Such changes in the urethane structure were accompanied by characteristic significant bathochromic shifts of the long-wavelength absorption bands.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. G. Dmitrienko and V. V. Apyari, Polyurethane Foams. Sorption Properties and Application in Chemical Analysis [in Russian], Krasand, Moscow (2009).

  2. 2.

    H.-G. Elias, Macromolecules, Vol. 4, Applications of Polymers, Wiley-VCH (2009).

  3. 3.

    G. V. Lisichkin (ed.), Chemistry of Grafted Surface Compounds [in Russian], Fizmatlit, Moscow (2003).

    Google Scholar 

  4. 4.

    A. P. Kharitonov and B. A. Loginov, Ross. Khim. Zh., 52, No. 3, 106–111 (2008).

    Google Scholar 

  5. 5.

    M. A. Ksenofontov, D. S. Umreiko, and M. B. Shundalov, Zh. Prikl. Spektrosk., 79, No. 3, 362–365 (2012).

    Google Scholar 

  6. 6.

    K. Burke, J. Werschnik, and E. K. U. Gross, J. Chem. Phys., 123, 062206 (2005).

    ADS  Article  Google Scholar 

  7. 7.

    C. Adamo and V. Barone, Chem. Phys. Lett., 330, 152–160 (2000).

    ADS  Article  Google Scholar 

  8. 8.

    L. Miao, Y. Yao, F. Yang, Z. Wang, W. Li, and J. Hu, J. Mol. Struct.: THEOCHEM, 865, 79–87 (2008).

    Article  Google Scholar 

  9. 9.

    M. E. Casida, J. Mol. Struct.: THEOCHEM, 914, 3–18 (2009).

    Article  Google Scholar 

  10. 10.

    J. Fabian, Dyes Pigments, 84, 36–53 (2010).

    Article  Google Scholar 

  11. 11.

    M. Belletête, P.-L. T. Boudreault, M. Leclerc, and G. Durocher, J. Mol. Struct.: THEOCHEM, 962, 33–37 (2010).

    Article  Google Scholar 

  12. 12.

    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem., 14, 1347–1363 (1993).

    Article  Google Scholar 

  13. 13.

    http://www.msg.ameslab.gov/GAMESS/GAMESS.html

  14. 14.

    B. M. Bode and M. S. Gordon, J. Mol. Graphics Modell., 16, 133–138 (1998).

    Article  Google Scholar 

  15. 15.

    L. J. Farrugia, J. Appl. Crystallogr., 30, 565 (1997).

    Article  Google Scholar 

  16. 16.

    Ya. F. Freimanis, Organic Compounds with Intramolecular Charge Transfer [in Russian], Zinatne, Riga (1985).

  17. 17.

    I. Iweibo, R. A. Oderinde, and J. A. Faniran, Spectrochim. Acta, Part A, 38, 1–7 (1982).

    ADS  Article  Google Scholar 

  18. 18.

    H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao, J. Chem. Phys., 115, 3540–3544 (2001).

    ADS  Article  Google Scholar 

  19. 19.

    O. Gritsenko and E. J. Baerends, J. Chem. Phys., 121, 655–660 (2004).

    ADS  Article  Google Scholar 

  20. 20.

    X.-H. Duan, X.-Y. Li, R.-X. He, and X.-M. Cheng, J. Chem. Phys., 122, 084314 (2005).

    ADS  Article  Google Scholar 

  21. 21.

    N. T. Maitra, J. Chem. Phys., 122, 234104 (2005).

    ADS  Article  Google Scholar 

  22. 22.

    W. Kohn, Rev. Mod. Phys., 71, 1253–1266 (1999).

    ADS  Article  Google Scholar 

  23. 23.

    T. Leininger, H. Stoll, H.-J. Werner, and A. Savin, Chem. Phys. Lett., 275, 151–160 (1997).

    ADS  Article  Google Scholar 

  24. 24.

    T. H. Dunning, Jr., J. Chem. Phys., 90, 1007–1023 (1989).

    ADS  Article  Google Scholar 

  25. 25.

    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    ADS  Article  Google Scholar 

  26. 26.

    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 37, 785–789 (1988).

    ADS  Article  Google Scholar 

  27. 27.

    P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem., 98, 11623–11627 (1994).

    Article  Google Scholar 

  28. 28.

    J. P. Doering, J. Chem. Phys., 67, 4065–4070 (1977).

    ADS  Google Scholar 

  29. 29.

    V. Molina and M. Merchan, J. Phys. Chem. A, 105, 3745–3751 (2001).

    Article  Google Scholar 

  30. 30.

    T. Ebata, C. Minejima, and N. Mikami, J. Phys. Chem. A, 106, 11070–11074 (2002).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. B. Shundalau.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 80, No. 3, pp. 330–336, May–June, 2013.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ksenofontov, M.A., Ponarjadov, V.V., Umreiko, D.S. et al. Influence of fluorination on UV spectra of polyurethane structural fragments. J Appl Spectrosc 80, 319–325 (2013). https://doi.org/10.1007/s10812-013-9767-7

Download citation

Keywords

  • ab initio calculation
  • time-dependent density functional theory
  • UV spectrum
  • urethanes
  • fluorination