Skip to main content

Determination of chlorine in concrete by laser-induced breakdown spectroscopy in air

The destruction of concrete is often associated with local chloride corrosion. The ability to determine by laser-induced breakdown spectroscopy (LIBS) the level of chlorine in concrete below that resulting in destructive material changes was demonstrated. The intensity of the analytical line Cl I 837.60 nm increased significantly with the use of double-pulse LIBS. The effects of the interpulse delay and the plasma observation time after the second pulse were studied in order to combine the second harmonics of Q-switched Nd:YAG and Nd:YALO lasers (532 nm + 540 nm). The optimal temporal parameters of double-pulse LIBS determination of chlorine were 4.0 and 0.5 μs, respectively. Under these conditions, the detection limit of chlorine was 50 ppm.

This is a preview of subscription content, access via your institution.


  1. B. Sallé, P. Mauchien, and S. Maurice, Spectrochim. Acta, Part B, 62, 739–768 (2007).

    ADS  Article  Google Scholar 

  2. D. W. Hahn and N. Omenetto, Appl. Spectrosc., 66, 347–419 (2012).

    ADS  Article  Google Scholar 

  3. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy [Russian translation], Tekhnosfera, Moscow (2009), pp. 10–45.

    Google Scholar 

  4. G. Wilsch, F. Weritz, D. Schaurich, and H. Wiggenhauser, Construct. Build. Mater., 19, 724–730 (2005).

    Article  Google Scholar 

  5. M. A. Gondal, Z. H. Yamani, T. Hussain, and O. S. B. Al-Amoudi, Spectrosc. Lett., 42, 171–177 (2009).

    ADS  Article  Google Scholar 

  6. F. Weritz, D. Schaurich, and G. Wilsch, Spectrochim. Acta, Part B, 62, 1404–1511 (2007).

    Article  Google Scholar 

  7. C. D. Gehlen, E. Wiens, R. Noll, G. Wilsch, and K. Reichling, Spectrochim. Acta, Part B, 64, 1135–1140 (2009).

    ADS  Article  Google Scholar 

  8. M. A. Gondal, A. Dastageer, M. Maslehuddin, A. J. Alnehmi, and O. S. B. Al-Amoudi, J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 46, 198–203 (2011).

    Article  Google Scholar 

  9. K. Sugiyama, T. Fujii, T. Matsumura, Y. Shiogama, M. Yamaguchi, and K. Nemoto, Appl. Opt., 49, 181–190 (2010).

    Article  Google Scholar 

  10. V. S. Burakov, V. V. Kiris, and S. N. Raikov, Zh. Prikl. Spektrosk., 74, No. 3, 289–295 (2007).

    Google Scholar 

  11. V. I. Babushok, F. C. De Lucia, Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, Spectrochim. Acta, Part B, 61, 999–1014 (2006).

    ADS  Article  Google Scholar 

  12. NIST Atomic Spectra Database;

  13. N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, Spectrochim. Acta, Part B, 65, 642–657 (2010).

    ADS  Article  Google Scholar 

  14. F. Weritz, D. Schaurich, A. Taffe, and G. Wilsch, Anal. Bioanal. Chem., 385, 248–255 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to T. A. Labutin.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 80, No. 3, pp. 325–329, May–June, 2013.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Labutin, T.A., Popov, A.M., Raikov, S.N. et al. Determination of chlorine in concrete by laser-induced breakdown spectroscopy in air. J Appl Spectrosc 80, 315–318 (2013).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • laser-induced breakdown spectroscopy
  • concrete
  • chlorine
  • cement