Skip to main content
Log in

Determination of chlorine in concrete by laser-induced breakdown spectroscopy in air

  • Published:
Journal of Applied Spectroscopy Aims and scope

The destruction of concrete is often associated with local chloride corrosion. The ability to determine by laser-induced breakdown spectroscopy (LIBS) the level of chlorine in concrete below that resulting in destructive material changes was demonstrated. The intensity of the analytical line Cl I 837.60 nm increased significantly with the use of double-pulse LIBS. The effects of the interpulse delay and the plasma observation time after the second pulse were studied in order to combine the second harmonics of Q-switched Nd:YAG and Nd:YALO lasers (532 nm + 540 nm). The optimal temporal parameters of double-pulse LIBS determination of chlorine were 4.0 and 0.5 μs, respectively. Under these conditions, the detection limit of chlorine was 50 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Sallé, P. Mauchien, and S. Maurice, Spectrochim. Acta, Part B, 62, 739–768 (2007).

    Article  ADS  Google Scholar 

  2. D. W. Hahn and N. Omenetto, Appl. Spectrosc., 66, 347–419 (2012).

    Article  ADS  Google Scholar 

  3. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy [Russian translation], Tekhnosfera, Moscow (2009), pp. 10–45.

    Google Scholar 

  4. G. Wilsch, F. Weritz, D. Schaurich, and H. Wiggenhauser, Construct. Build. Mater., 19, 724–730 (2005).

    Article  Google Scholar 

  5. M. A. Gondal, Z. H. Yamani, T. Hussain, and O. S. B. Al-Amoudi, Spectrosc. Lett., 42, 171–177 (2009).

    Article  ADS  Google Scholar 

  6. F. Weritz, D. Schaurich, and G. Wilsch, Spectrochim. Acta, Part B, 62, 1404–1511 (2007).

    Article  Google Scholar 

  7. C. D. Gehlen, E. Wiens, R. Noll, G. Wilsch, and K. Reichling, Spectrochim. Acta, Part B, 64, 1135–1140 (2009).

    Article  ADS  Google Scholar 

  8. M. A. Gondal, A. Dastageer, M. Maslehuddin, A. J. Alnehmi, and O. S. B. Al-Amoudi, J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 46, 198–203 (2011).

    Article  Google Scholar 

  9. K. Sugiyama, T. Fujii, T. Matsumura, Y. Shiogama, M. Yamaguchi, and K. Nemoto, Appl. Opt., 49, 181–190 (2010).

    Article  Google Scholar 

  10. V. S. Burakov, V. V. Kiris, and S. N. Raikov, Zh. Prikl. Spektrosk., 74, No. 3, 289–295 (2007).

    Google Scholar 

  11. V. I. Babushok, F. C. De Lucia, Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, Spectrochim. Acta, Part B, 61, 999–1014 (2006).

    Article  ADS  Google Scholar 

  12. NIST Atomic Spectra Database; http://www.nist.gov/pml/data/asd.cfm.

  13. N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, Spectrochim. Acta, Part B, 65, 642–657 (2010).

    Article  ADS  Google Scholar 

  14. F. Weritz, D. Schaurich, A. Taffe, and G. Wilsch, Anal. Bioanal. Chem., 385, 248–255 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Labutin.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 80, No. 3, pp. 325–329, May–June, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labutin, T.A., Popov, A.M., Raikov, S.N. et al. Determination of chlorine in concrete by laser-induced breakdown spectroscopy in air. J Appl Spectrosc 80, 315–318 (2013). https://doi.org/10.1007/s10812-013-9766-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-013-9766-8

Keywords

Navigation