Skip to main content

Advertisement

Log in

Efficiency of recoil momentum generation during femtosecond laser ablation of copper in vacuum

  • Published:
Journal of Applied Spectroscopy Aims and scope

A combination of interferometric techniques is used to determine the specific impulse (~250–300 s), specific mechanical recoil momentum (momentum coupling, 1–3∙10–4 N∙s/J), efficiency with which the laser energy is converted to kinetic energy of the gas-plasma fl ow (~0.1–0.55), and degree of monochromaticity (~0.75–0.82) of the gas-plasma flow during femtosecond (τ ~ 45 fs, λ ~ 800 nm) ablation of copper in vacuum. The experimental results are compared with published data covering a wide range of laser interaction parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Thyagarajan and A. Ghatak, Lasers: Fundamentals and Applications, New York, Springer Science (2010) 103–415.

  2. C. Phipps, M. Birkan, W. Bohn, H.-A. Eckel, H. Horisawa, T. Lippert, M. M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, J. Propulsion Power, 26, No. 4, 609–637 (2010).

    Article  Google Scholar 

  3. V. Malka, J. Faure, C. Rechatin, A. Ben-Ismail, J. K. Lim, X. Davoine, and E. Lefebvre, Phys. Plasmas, 16, No. 5, 056703-7 (2009).

    Article  ADS  Google Scholar 

  4. A. Piqué, H. Kim, and C. Arnold, Laser Ablation and Its Applications, Springer, Berlin, Heidelberg (2007), pp. 339–373.

    Book  Google Scholar 

  5. C. W. Schneider and T. Lippert, in: P. Schaaf (Ed.), Laser Processing of Materials, Springer, Berlin, Heidelberg (2010), pp. 89–112.

  6. M. A. K. A. Elbandrawy, Femtosecond Laser Ablation with Single and Two-Photon Excitation for MEMS, Ph.D Dissertation, Norfolk (2006).

  7. B. Hüttner, in: J. Dowden (Ed.), The Theory of Laser Materials Processing, Springer Science, Dordrecht (2009), pp. 315–337.

  8. A. Y. Vorobyev and C. Guo, J. Phys.: Conf. Ser., 59, 418–423 (2007).

    Article  ADS  Google Scholar 

  9. E. Yu. Loktionov, A. V. Ovchinnikov, Yu. Yu. Protasov, and D. S. Sitnikov, Teplofiz. Vysok. Temp., 49, No. 3, 415–425 (2011).

    Google Scholar 

  10. E. Yu. Loktionov, A. V. Ovchinnikov, Yu. Yu. Protasov, and D. S. Sitnikov, Kratkie Soobshcheniya po Fizike, No. 3, 31–34 (2010).

  11. E. Yu. Loktionov, A. V. Ovchinnikov, Yu. Yu. Protasov, and D. S. Sitnikov, PTÉ, No. 3, 104–110 (2010).

  12. O. A. Bukin, A. A. Il’in, Yu. N. Kul’chin, I. G. Nagornyi, A. N. Pavlov, and A. V. Bulanov, Kvant. Élektron., 36, No. 3, 553–556 (2006).

    Article  Google Scholar 

  13. C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, J. Appl. Phys., 64, No. 3, 1083–1096 (1988).

    Article  ADS  Google Scholar 

  14. J. E. Sinko and C. R. Phipps, Appl. Phys. Lett., 95, No. 13, 131105-3 (2009).

    Article  ADS  Google Scholar 

  15. N. Hosoya, I. Kajiwara, and T. Hosokawa, J. Sound Vibrat., 331, No. 6, 1355–1365 (2012).

    Article  ADS  Google Scholar 

  16. S. Andreev, K. Firsov, S. Kazantsev, I. Kononov, and A. Samokhin, Laser Phys., 17, No. 6, 834–841 (2007).

    Article  ADS  Google Scholar 

  17. V. A. Borisenok, V. G. Simakov, V. G. Kurpatkin, V. A. Bragunets, V. A. Volgin, V. N. Romaev, V. V. Tukmakov, V. A. Kruchinin, A. A. Lebedeva, D. R. Goncharova, and M. V. Zhernokletov, PTÉ, No. 4, 113–121 (2008).

  18. F. N. Lyubchenko, A. V. Fedenev, N. A. Bosak, A. N. Chumakov, A. N. Panchenko, and V. F. Tarasenko, Kosmonavtika Raketostroenie, No. 3, 62–74 (2009).

  19. A. V. Pakhomov, D. A. Gregory, and M. S. Thompson, AIAA J., 40, No. 5, 947–952 (2002).

    Article  ADS  Google Scholar 

  20. C. Phipps, J. Luke, D. Funk, D. Moore, J. Glownia, and T. Lippert, Appl. Surf. Sci., 252, No. 13, 4838–4844 (2006).

    Article  ADS  Google Scholar 

  21. E. Yu. Loktionov, A. V. Ovchinnikov, Yu. Yu. Protasov, and D. S. Sitnikov, PTÉ, No. 4, 140–144 (2010).

  22. V. I. Zakharov, E. Yu. Loktionov, Yu. S. Protasov, and Yu. Yu. Protasov, Vestn. MGTU im N. E. Baumana, Ser. Mashinostroenie (2013, in press).

  23. S. Amoruso, X. Wang, C. Altucci, C. de Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, Appl. Surf. Sci., 186, Nos. 1–4, 358–363 (2002).

    Article  ADS  Google Scholar 

  24. E. Yu. Loktionov, Yu. Yu. Protasov, V. D. Telekh, and R.R. Khaziev, PTÉ, No. 1, 53–62 (2013).

  25. L. D’Alessio, A. Galasso, A. Santagata, R. Teghil, A. R. Villani, P. Villani, and M. Zaccagnino, Appl. Surf. Sci., 208–209, 113–118 (2003).

    Article  Google Scholar 

  26. O. A. Novodvorsky, O. D. Khramova, E. O. Filippova, and A. K. Shevelev, Proc. SPIE, 3885, 471–480 (2000).

    Article  ADS  Google Scholar 

  27. D. Grojo, J. Hermann, and A. Perrone, J. Appl. Phys., 97, No. 6, 063306-9 (2005).

    Article  ADS  Google Scholar 

  28. N. Zhang, W. Wang, X. Zhu, J. Liu, K. Xu, P. Huang, J. Zhao, R. Li, and M. Wang, Opt. Express, 19, No. 9, 8870–8878 (2011).

    Article  ADS  Google Scholar 

  29. S. Noel, J. Hermann, and T. Itina, Appl. Surf. Sci., 253, No. 15, 6310–6315 (2007).

    Article  ADS  Google Scholar 

  30. S. Amoruso, X. Wang, C. Altucci, C. de Lisio, M. Armenante, R. Bruzzese, and R. Velotta, Appl. Phys. Lett., 77, No. 23, 3728–3730 (2000).

    Article  ADS  Google Scholar 

  31. E. Axente, S. Noel, J. Hermann, M. Sentis, and I. N. Mihailescu, Appl. Surf. Sci., 255, No. 24, 9734–9737 (2009).

    Article  ADS  Google Scholar 

  32. Z. Chen and A. Bogaerts, J. Appl. Phys., 97, No. 6, 063305-12 (2005).

    Article  ADS  Google Scholar 

  33. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, Appl. Phys. Lett., 84, No. 22, 4502–4504 (2004).

    Article  ADS  Google Scholar 

  34. B. C. D’Souza, Development of Impulse Measurement Techniques for the Investigation of Transient Forces due to Laser-Induced Ablation, Ph. D. Dissertation (2007).

  35. Z. Y. Zheng, J. Zhang, X. Lu, Z. Q. Hao, X. H. Yuan, Z. H. Wang, and Z. Y. Wei, Appl. Phys. A: Mater. Sci. & Proc., 83, No. 2, 329–332 (2006).

    Article  ADS  Google Scholar 

  36. T. Donnelly, J. Lunney, S. Amoruso, R. Bruzzese, X. Wang, and X. Ni, Appl. Phys. A: Mater. Sci. & Amp. Proc., 100, No. 2, 569–574 (2010).

    Article  ADS  Google Scholar 

  37. D. Ali, M. Z. Butt, and M. Khaleeq-ur-Rahman, Appl. Surf. Sci., 257, No. 7, 2854–2860 (2011).

    Article  ADS  Google Scholar 

  38. I. Konomi, T. Motohiro, and T. Asaoka, J. Appl. Phys., 106, No. 1, 013107-8 (2009).

    Article  ADS  Google Scholar 

  39. A.V. Pakhomov, A. J. Roybal, and M. Duran, Appl. Spectr., 53, No. 8, 979–986 (1999).

    Article  ADS  Google Scholar 

  40. J. Lin, Time-Resolved Imaging for the Dynamic Study of Ablative Laser Propulsion, Ph. D. Dissertation, Huntsville (2004).

  41. L. Velardi, M. V. Siciliano, D. D. Side, and V. Nassisi, Rev. Sci. Instrum., 83, No. 2, 02B717 (2012).

    Article  Google Scholar 

  42. E. Amer, P. Gren, A. F. H. Kaplan, M. Sjödahl, and M. El Shaer, Appl. Surf. Sci., 256, No. 14, 4633–4641 (2010).

    Article  ADS  Google Scholar 

  43. J. Schou, S. Amoruso, and J. Lunney, in: C. Phipps (Ed.), Laser Ablation and Its Applications, Springer, Berlin Heidelberg, (2007), pp. 67–95.

  44. B. Sallé, O. Gobert, P. Meynadier, M. Perdrix, G. Petite, and A. Semerok, Appl. Phys. A: Mater. Sci. & Proc., 69, No. 7, S381–S383 (1999).

    Article  ADS  Google Scholar 

  45. Y. Hirayama and M. Obara, Proc. SPIE, 5714, 271–282 (2005).

    Article  ADS  Google Scholar 

  46. M. Hashida, A. F. Semerok, O. Gobert, G. Petite, Y. Izawa, and J. F. Wagner, Appl. Surf. Sci., 197-198, 862–867 (2002).

    Article  Google Scholar 

  47. R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, F. Dausinger, S. Valette, C. Donnet, and E. Audouard, Appl. Phys. A, 80, No. 7, 1589–1593 (2005).

    Article  ADS  Google Scholar 

  48. J. Byskov-Nielsen, J.-M. Savolainen, M. Christensen, and P. Balling, Appl. Phys. A, 103, No. 2, 447–453 (2011).

    Article  ADS  Google Scholar 

  49. R. Bernath, High-Intensity Ultra-Fast Laser Interaction Technologies, Ph. D. Dissertation (2007).

  50. X. Liu, W. Zhou, C. Chen, L. Zhao, and Y. Zhang, J. Mater. Proc. Technol., 203, Nos. 1–3, 202–207 (2008).

    Article  Google Scholar 

  51. A. Y. Vorobyev and C. Guo, J. Phys.: Conf. Series, 59, 579–584 (2007).

    Article  ADS  Google Scholar 

  52. A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, Appl. Phys. A: Mater. Sci. & Proc., 94, No. 1, 19–24 (2009).

    Article  ADS  Google Scholar 

  53. D. E. Roberts, A. du Plessis, and L. R. Botha, Appl. Surf. Sci., 256, No. 6, 1784–1792 (2010).

    Article  ADS  Google Scholar 

  54. E. Yu. Loktionov and Yu. Yu. Protasov, Inzh. Fizika, No. 8, 3–12 (2010).

  55. C. Chaleard, V. Detalle, S. Kocon, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, P. Palianov, M. Perdrix, G. Petite, B. Salle, and A. F. Semerok, Proc. SPIE, 3404, 441-448 (1998).

    Article  ADS  Google Scholar 

  56. Y. Xia, L. Mei, C. Tan, X. Liu, Q. Wang, and S. Yue, Appl. Phys. A: Mater. Sci. & Amp. Proc., 52, No. 6, 425–432 (1991).

    Article  ADS  Google Scholar 

  57. J. B. de Matos, C. A. B. da Silveira, and N. A. S. Rodrigues, J. Phys.: Conf. Ser., 370, No. 1, 012007 (2012).

    Article  ADS  Google Scholar 

  58. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, J. Opt. Soc. Am. B, 14, No. 10, 2716–2722 (1997).

    Article  ADS  Google Scholar 

  59. J. Jandeleit, G. Urbasch, H. D. Hoffmann, H. G. Treusch, and E. W. Kreutz, Appl. Phys. A: Mater. Sci. & Proc., 63, No. 2, 117–121 (1996).

    Article  ADS  Google Scholar 

  60. A. Weck, T. H. R. Crawford, D. S. Wilkinson, H. K. Haugen, and J. S. Preston, Appl. Phys. A: Mater. Sci. & Proc., 90, No. 3, 537–543 (2008).

    Article  ADS  Google Scholar 

  61. Y. Hirayama and M. Obara, Appl. Surf. Sci., 197–198, 741–745 (2002).

    Article  Google Scholar 

  62. Y. Afanasiev, B. Chichkov, N. Demchenko, V. Isakov, and I. Zavestovskaya, J. Rus. Laser Res., 20, No. 2, 89–115 (1999).

    Article  Google Scholar 

  63. J. P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, and E. Audouard, Phys. Rev. B, 71, No. 16, 165406 (2005).

    Article  ADS  Google Scholar 

  64. C. Momma, B.N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, Opt. Commun., 129, Nos. 1–2, 134–142 (1996).

    Article  ADS  Google Scholar 

  65. S. Bruneau, J. Hermann, M. L. Sentis, G. Dumitru, V. Romano, H. P. Weber, A. F. Semerok, and W. Marine, Proc. SPIE, 5147, 199–203 (2003).

    Article  ADS  Google Scholar 

  66. S. Noel and J. Hermann, Proc. SPIE, 6785, 67850F-8 (2007).

    Google Scholar 

  67. B. Xu, Q. Wang, X. Zhang, S. Zhao, Y. Xia, L. Mei, X. Wang, and G. Wang, Appl. Phys. B, 57, No. 4, 277–280 (1993).

    Article  ADS  Google Scholar 

  68. J. Li and Z. Tang, Proc. SPIE, 6279, 62794H (2007).

    ADS  Google Scholar 

  69. A. N. Chumakov, A. M. Petrenko, and N. A. Bosak, Kvant. Élektron., 34, No. 10, 948–950 (2004).

    Article  Google Scholar 

  70. A.Y. Vorobyev and C. Guo, Natural Sci., 3, No. 6, 488–495 (2011).

    Article  Google Scholar 

  71. S. Scharring, J. Sinko, A. Sasoh, H.-A. Eckel, and H.-P. Röser, Int. J. Aerospace Innov., 3, No. 1, 33–43 (2011).

    Article  Google Scholar 

  72. E. Yu. Loktionov, A. V. Ovchinnikov, Yu. Yu. Protasov, and D. S. Sitnikov, Pis′ma ZhTF, 36, No. 13, 8–15 (2010).

    Google Scholar 

  73. E. Yu. Loktionov, A. V. Ovchinnikov, Yu. Yu. Protasov, and D. S. Sitnikov, Dokl. AN Rossii, 434, No. 1, 38–41 (2010).

    Google Scholar 

  74. E. Yu. Loktionov, A. V. Ovchinnikov, Yu. Yu. Protasov, and D. S. Sitnikov, Opt. Spektrosk., 112, No. 4, 685–692 (2012).

    Article  Google Scholar 

  75. E. Yu. Loktionov, A. V. Ovchinnikov, Yu. Yu. Protasov, and D. S. Sitnikov, Zh. Prikl. Spektrosk., 77, No. 4, 604–611 (2010).

    Google Scholar 

  76. C. Phipps and J. Luke, in: Laser Ablation and its Applications, Springer, New York (2007) pp. 407–434.

  77. Y. Zhou, B. Wu, and A. Forsman, J. Appl. Phys., 108, No. 9, 093504-7 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Loktionov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 80, No. 2, pp. 257–265, March–April, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loktionov, E.Y., Protasov, Y.S. & Protasov, Y.Y. Efficiency of recoil momentum generation during femtosecond laser ablation of copper in vacuum. J Appl Spectrosc 80, 249–257 (2013). https://doi.org/10.1007/s10812-013-9754-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-013-9754-z

Keywords

Navigation