Skip to main content

Advertisement

Log in

Influence of macromolecule main chain structure on electron excitation energy transfer in carbazole-containing polymers

  • Published:
Journal of Applied Spectroscopy Aims and scope

Efficiencies of energy transfer from singlet excitons to rubrene in poly-N-epoxypropylcarbazole (PEPC) and from triplet excitons to pyrene in poly-N-vinylcarbazole (PVC) were found to increase on heating from 5 to 295 K. At the same time, the transfer efficiency in PVC at rubrene concentration 2∙10–3 M decreased in the range T = 100–295 K, which correlated with a rise in the intensity of the fluorescence band of the matrix sandwich-like excimers. However, the transfer efficiency increased upon increasing the concentration, which caused the maximum donor–acceptor distance to approach the critical radius of the Forster model. The observed effects were explained by the fact that the free-path lengths of singlet excitons in PEPC and triplet excitons in PVC increased with increasing temperature and, correspondingly, the probability of them approaching the acceptor within distances where energy transfer was possible increased. Singlet-exciton self-trapping at excimer-forming sites and formation of sandwich-like excimers competed in PVC with energy transfer to rubrene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. W. Tang and S. A. Van Slyke, Appl. Phys. Lett., 51, 913–915 (1987).

    Article  ADS  Google Scholar 

  2. D. Muller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker, and K. Meerholz, Nature, 421, 829–833 (2003).

    Article  ADS  Google Scholar 

  3. S. R. Forrest, Nature, 428, 911–918 (2004).

    Article  ADS  Google Scholar 

  4. J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, Appl. Phys. Lett., 64, 815–817 (1994).

    Article  ADS  Google Scholar 

  5. H. A. Al Attar, A. P. Monkman, M. Tavasli, S. Bettington, and M. R. Bryce, Appl. Phys. Lett., 86, 121101–121103 (2005).

    Article  ADS  Google Scholar 

  6. Y. Xu, J. Peng, J. Jiang, W. Xu, W. Yang, and Y. Cao, Appl. Phys. Lett., 87, 193502–193504 (2005).

    Article  ADS  Google Scholar 

  7. B. C. Krummacher, V.-E. Choong, M. K. Mathai, S. A. Choulis, F. So, F. Jermann, T. Fiedler, and M. Zachau, Appl. Phys. Lett., 88, 113506–113508 (2006).

    Article  ADS  Google Scholar 

  8. A. Tang, F. Teng, S. Xiong, and Y. Hou, Appl. Surf. Sci., 254, 2043–2047 (2008).

    Article  ADS  Google Scholar 

  9. Q. Zhao, S.-J. Liu, and W. Huang, Macromol. Rapid Commun., 31, 794–807 (2010).

    Article  Google Scholar 

  10. L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, and J. Kido, Adv. Mater., 23, 926–952 (2011).

    Article  Google Scholar 

  11. J. Liu, L. Li, and O. Pei, Macromolecules, 44, 2451–2456 (2011).

    Article  ADS  Google Scholar 

  12. P. A. Lane, L. C. Palilis, D. F. O'Brien, C. Giebeler, A. J. Cadby, D. G. Lidzey, J. Campbell, W. Blau, and D. D. C. Bradley, Phys. Rev. B: Condens. Matter Mater. Phys., 63, 235206 (2001).

    Google Scholar 

  13. Y.-Y. Noh, C.-L. Lee, J.-J. Kim, and K. Yase, J. Chem. Phys., 118, 2853–2864 (2003).

    Article  ADS  Google Scholar 

  14. W. Li, Y. Jiang, and T. Wang, J. Lumin., 128, 1175–1179 (2008).

    Article  Google Scholar 

  15. N. A. Davidenko and A. A. Ishchenko, Pis'ma Zh. Tekh. Fiz., 28, 84–90 (2002).

    Google Scholar 

  16. M. Pope and C. E. Swenberg, Electronic Processes in Organic Chemistry, 2, Oxford Univ. Press, New York (1982).

    Google Scholar 

  17. Yu. P. Piryatinskii, V. N. Yashchuk, Yu. A. Cherkasov, Yu. N. Kirpach, and E. L. Aleksandrova, Zh. Prikl. Spektrosk., 53, No. 1, 41–49 (1990).

    Google Scholar 

  18. Yu. A. Skryshevskii, Zh. Prikl. Spektrosk., 79, No. 4, 576–583 (2012).

    Google Scholar 

  19. Yu. A. Skryshevskii, Zh. Prikl. Spektrosk., 69, No. 5, 629–633 (2002).

    Google Scholar 

  20. Yu. A. Skryshevskii, Fiz. Tverd. Tela, 52, 1227–1232 (2010).

    Google Scholar 

  21. S. Tagawa, M. Washio, and Y. Tabata, Chem. Phys. Lett., 68, 276–281 (1979).

    Article  ADS  Google Scholar 

  22. G. Peter, H. Bassler, W. Schrof, and H. Port, Chem. Phys., 94, 445–453 (1985).

    Article  Google Scholar 

  23. Yu. A. Skryshevskii and A. Yu. Vakhnin, Fiz. Tverd. Tela, 49, 842–848 (2007).

    Google Scholar 

  24. M. Pope and C. E. Swenberg, Electronic Processes in Organic Chemistry, 1, Oxford Univ. Press, New York (1982).

    Google Scholar 

  25. H. Bassler, in: Primary Photoexcitations in Conjugated Polymers. Molecular Exciton versus Semiconductor Band Model, N. S. Sarciftci (ed.), World Scientifi c Publishing Co., (1997), pp. 52–98.

  26. Yu. A. Skryshevskii, Zh. Prikl. Spektrosk., 75, No. 3, 323–330 (2008).

    Google Scholar 

  27. H. Bassler, in: Disorder Effects on Relaxational Processes, R. Blumen (ed.), Springer Verlag, Berlin (1994), pp. 485–507.

  28. G. Giro, P. G. Di Marco, M. Pizzoli, and G. Ceccorulli, Chem. Phys. Lett., 150, 159–164 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Skryshevski.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 80, No. 2, pp. 171–176, March–April, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skryshevski, Y.A. Influence of macromolecule main chain structure on electron excitation energy transfer in carbazole-containing polymers. J Appl Spectrosc 80, 164–169 (2013). https://doi.org/10.1007/s10812-013-9740-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-013-9740-5

Keywords

Navigation