Journal of Applied Spectroscopy

, Volume 79, Issue 5, pp 737–743 | Cite as

The C center isolated nitrogen-related infrared absorption at 2688 cm–1: perfect harmony in diamond

  • T. HainschwangEmail author
  • E. Fritsch
  • L. Massi
  • B. Rondeau
  • F. Notari

Seventy-six diamonds with detectable C centers were selected based on the presence of a 1344 and/or 2688 cm–1 absorption in their infrared (IR) spectra. Such diamonds are always distinctly colored, often in yellow to orange with various modifications of colours such as brown and green. Fifty-seven of them had an IR spectrum exhibiting the well-known C center-related 1344.4 cm–1 (hereinafter 1344 cm–1) IR absorption peak with an absorption coefficient of more than 0.1. The IR spectra of 15 diamonds had a 1344 cm–1 peak with an absorption coefficient below 0.1 cm–1. Finally, in the spectra of 4 samples the 1344 cm–1 peak was undetectable because of strong aggregated nitrogen absorption but the 2688 cm–1 line was present. When the 1344 cm–1 absorption is superior to 0.1 cm–1, this fairly sharp line (FWHM = 3.3–4.2 cm–1) at 2688 cm–1 is detected, which correlates in intensity with the 1344 cm–1 feature.


C center infrared spectroscopy overtone absorption nitrogen concentration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. M. Breeding and J. E. Shigley, Gems. Gemol., 45, N 2, 96 (2009).CrossRefGoogle Scholar
  2. 2.
    Properties and Growth of Diamond, Ed. G. Davies, Institution of Engineering and Technology (IET) (1994).Google Scholar
  3. 3.
    R. C. Burns, V. Cvetkovic, C. N. Dodge, D. J. F. Evans, M. T. Rooney, P. M. Spear, and C. M. Welbourn, J. Cryst. Growth, 102, N 2, 257.Google Scholar
  4. 4.
    S. C. Hofer, Collecting and Classifying Coloured Diamonds: An Illustrated Study of the Aurora Collection, Ashland Press Inc., New York (1998).Google Scholar
  5. 5.
    R. G. Farrer, Solid State Commun., 7, N 9, 685 (1969).ADSCrossRefGoogle Scholar
  6. 6.
    P. R. Briddon, R. Jones, and M. I. Heggie, Int. Conf. New Diamond Science and Technology, MRS Proc., 63 (1991).Google Scholar
  7. 7.
    A. T. Collins and G. S. Woods, Philos. Mag. B, 46, 77 (1982).CrossRefGoogle Scholar
  8. 8.
    Kiflawi, A. E. Mayer, P. M. Spear, J. A. Van Wyk, and G. S. Woods, Philos. Mag. B, 69, 1141 (1994).Google Scholar
  9. 9.
    T. Hainschwang, F. Notari, E. Fritsch, and L. Massi, Diamond Relat. Mater., 15, 1555 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    The Properties of Natural and Synthetic Diamond, Ed. J. E. Field, Academic Press, London (1992).Google Scholar
  11. 11.
    S. L. Lawson, D. Fisher, D. C. Hunt, and M. E. Newton, J. Phys. Condens. Matter, 10, 6171 (1998).ADSCrossRefGoogle Scholar
  12. 12.
    G. S. Woods and A. T. Collins, J. Phys. Chem. Solids, 44, No. 5, 471 (1983).ADSCrossRefGoogle Scholar
  13. 13.
    T. Hainschwang, E. Fritsch, F. Notari, and B. Rondeau, Diamond Relat. Mater. (2011) submitted.Google Scholar
  14. 14.
    E. Fritsch, T. Hainschwang, L. Massi, and B. Rondeau, New Diamond Front. Carbon Technol., 17, No. 2, 63 (2007).Google Scholar
  15. 15.
    G. Davies, A. T. Collins, and P. Spear, Solid State Commun., 49, 433 (1984).ADSCrossRefGoogle Scholar
  16. 16.
    A. T. Collins, personal communication, 2011.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • T. Hainschwang
    • 1
    Email author
  • E. Fritsch
    • 2
  • L. Massi
    • 3
  • B. Rondeau
    • 4
  • F. Notari
    • 1
  1. 1.GGTL Laboratories — GEMLAB (Liechtenstein)/GemTechlab Switzerland Gnetsch 42BalzersGeneva
  2. 2.Universitéde Nantes — CNRS Institut des Matériaux Jean Rouxel (IMN)NantesFrance
  3. 3.GIA BangkokBangkokThailand
  4. 4.Université de Nantes — CNRS Laboratoire de Planétologie et Geodynamique de Nantes (LPGN)NantesFrance

Personalised recommendations