Skip to main content

Detection of ibuprofen and ciprofloxacin by solid-phase extraction and UV/Vis spectroscopy

A simple and economic solid-phase extraction coupled with UV/Vis spectrophotometric method is described for the analysis of ibuprofen and ciprofloxacin. Following solid-phase extraction from model wastewater samples containing standard ibuprofen or ciprofloxacin, elutes were analyzed by a UV/Vis spectrophotometer at 225 nm for ibuprofen and 280 nm for ciprofloxacin. The assay was linear for both compounds with good coefficients of correlation. This method shows good recoveries for both compounds with 101.0 ± 9.8% for ibuprofen and 99.4 ± 11.8% ciprofloxacin.

This is a preview of subscription content, access via your institution.


  1. 1.

    N. Lindqvist, T. Tuhkanen, and L. Kronberg, Water Res., 39, 2219–2226 (2005).

    Article  Google Scholar 

  2. 2.

    L. Wang, G. G. Ying, J. L. Zhao, X. B. Yang, F. Chen, R. Tao, S. Liu, and L. J. Zhou, Sci. Total Environ., 408, 3139–3147 (2010).

    Article  Google Scholar 

  3. 3.

    F. Comeau, C. Surette, G. L. Brun, and R. Losier, Sci. Total Environ., 396, 132–139 (2008).

    Article  Google Scholar 

  4. 4.

    N. Nakada, T. Tanishima, H. Shinohara, K. Kiri, and H. Takada, Water Res., 40, 3297–3305 (2006).

    Article  Google Scholar 

  5. 5.

    L. Lishman, S. A. Smyth, K. Sarafin, S. Kleywegt, J. Toito, T. Peart, B. Lee, M. Servos, M. Beland, and P. Seto, Sci. Total Environ., 367, 544–558 (2006).

    Article  Google Scholar 

  6. 6.

    T. A. Ternes, Water Res., 32, 3245–3252 (1998).

    Article  Google Scholar 

  7. 7.

    D. Ashton, M. Hilton, and K. V. Thomas, Sci. Total Environ., 333, 167–175 (2004).

    Article  Google Scholar 

  8. 8.

    H. B. Lee, T. E. Peart, and M. L. Svoboda, J. Chromatogr. A, 1139, 45–52 (2007).

    Article  Google Scholar 

  9. 9.

    A. Hartmann, A. C. Alder, T. Koller, and R. M. Widmer, Environ. Toxicol. Chem., 17, 377–384 (1998).

    Google Scholar 

  10. 10.

    P. de Voogt, M. L. Janex-Habibi, F. Sacher, L. Puijker, and M. Mons, Water Sci. Technol., 59, 39–46 (2009).

    Article  Google Scholar 

  11. 11.

    L. H. Hu, H. M. Martin, and T. J. Strathmann, Environ. Sci. Technol., 44, 6416–6421 (2010).

    Article  Google Scholar 

  12. 12.

    K. E. Murray, S. M. Thomas, and A. A. Bodour, Environ. Pollut., 158 , 3462–3470 (2010).

    Article  Google Scholar 

  13. 13.

    B. De Witte, H. Van Langenhove, K. Demeestere, K. Saerens, P. De Wispelaere, and J. Dewulf, Chemosphere, 78, 1142–1147 (2010).

    Article  Google Scholar 

  14. 14.

    T. G. Vasconcelos, D. M. Henriques, A. Konig, A. F. Martins, and K. Kummerer, Chemosphere, 76, 487–494 (2009).

    Article  Google Scholar 

  15. 15.

    F. Mendez-Arriaga, R. A. Torres-Palma, C. Petrier, S. Esplugas, J. Gimenez, and C. Pulgarin, Water Res., 43, 3984–3991 (2009).

    Article  Google Scholar 

  16. 16.

    N. Klamerth, L. Rizzo, S. Malato, M. I. Maldonado, A. Aguera, and A. R. Fernandez-Alba, Water Res., 44, 545–553 (2010).

    Article  Google Scholar 

  17. 17.

    N. Klamerth, S. Malato, M. I. Maldonado, A. Agura, and A. R. Fernandez-Alba, Environ. Sci. Technol., 44, 1792–1798 (2010).

    Article  Google Scholar 

  18. 18.

    S. Castiglioni, R. Bagnati, R. Fanelli, F. Pomati, D. Calamari, and E. Zuccato, Environ. Sci. Technol., 40, 357–362 (2006).

    Article  Google Scholar 

  19. 19.

    M. R. Khoshayand, H. Abdollahi, M. Shariatpanahi, A. Saadatfard, and A. Mohammadi, Spectrochim. Acta, A, 70, 491–497 (2008).

    ADS  Article  Google Scholar 

  20. 20.

    L. Du, X. Liu, W. Huang, and E. Wang, Electrochim. Acta, 51, 5754–5760 (2006).

    Article  Google Scholar 

  21. 21.

    L. C. Garzon and F. Martinez, J. Solution Chem., 33, 1379–1385 (2004).

    Article  Google Scholar 

  22. 22.

    C. I. Kosma, D. A. Lambropoulou, and T. A. Albanis, J. Hazard. Mater., 179, 804–811 (2010).

    Article  Google Scholar 

  23. 23.

    J.-L. Zhao, G.-G. Ying, L. Wang, J.-F. Yang, X.-B. Yang, L.-H. Yang, and X. Li, Sci. Total Environ., 407, 962–968 (2009).

    Article  Google Scholar 

  24. 24.

    S. Reverte, F. Borrull, E. Pocurull, and R. M. Marce, J. Chromatogr. A, 1010, 225–231 (2003).

    Article  Google Scholar 

  25. 25.

    E. M. Golet, A. C. Alder, A. Hartmann, T. A. Ternes, and W. Giger, Anal. Chem., 73, 3632–3638 (2001).

    Article  Google Scholar 

  26. 26.

    N. M. Vieno, T. Tuhkanen, and L. Kronberg, J. Chromatogr. A, 1134, 101–107 (2006).

    Article  Google Scholar 

  27. 27.

    X. S. Miao, F. Bishay, M. Chen, and C. D. Metcalfe, Environ. Sci. Technol., 38, 3533–3539 (2004).

    Article  Google Scholar 

  28. 28.

    R. H. Lindberg, P. Wennberg, M. I. Johansson, M. Tysklind, and B. A. V. Andersson, Environ. Sci. Technol., 39, 3421–3428 (2005).

    Article  Google Scholar 

  29. 29.

    J. E. Renew and C. H. Huang, J. Chromatogr. A, 1042, 113–117 (2004).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jia Qian Jiang.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 79, No. 3, pp. 477–481, May–June, 2012.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhou, Z., Jiang, J.Q. Detection of ibuprofen and ciprofloxacin by solid-phase extraction and UV/Vis spectroscopy. J Appl Spectrosc 79, 459–464 (2012).

Download citation


  • ciprofloxacin
  • ibuprofen
  • solid-phase extraction
  • UV/Vis spectrophotometry