Structure and vibrational IR spectra of a UCl4⋅2DMSO complex

Structural models are designed and spectral characteristics are computed based on DFT calculations for a complex of uranium tetrachloride with two molecules of dimethylsulfoxide (UCl4⋅2DMSO). The calculations were carried out using a B3LYP hybrid functional in the LANL2DZ effective core potential approximation for the uranium atom and a cc-pVDZ all-electron basis set for all other atoms. Two structural variants were found for the complex. In the first of them, which is more stable, DMSO molecules are coordinated to the central uranium atom through oxygen atoms whereas in the second one, whose energy is 225 kJ/mol higher, the coordination proceeds through sulfur atoms. The obtained spectral characteristics are analyzed and compared with experimental data. Spectral features that are characteristic of the complexation process are identified. The adequacy of the proposed models and the agreement between calculation and experiment are demonstrated.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    F. A. Cotton, R. Francis, and W. D. Horrocks, Jr., J. Phys. Chem., 64, 1534–1536 (1960).

    Article  Google Scholar 

  2. 2.

    M. Tranquille and M. T. Forel, Spectrochim. Acta, Part A , 28, 1305–1320 (1972).

    ADS  Article  Google Scholar 

  3. 3.

    H. Sakurai, C. Miyake, and S. Imoto, J. Inorg. Nucl. Chem., 42, 67–73 (1980).

    Article  Google Scholar 

  4. 4.

    L. Otero, P. Noblia, D. Gambino, H. Cerecetto, M. Gonzalez, J. A. Ellena, and O. E. Piro, Inorg. Chim. Acta, 344, 85–94 (2003).

    Article  Google Scholar 

  5. 5.

    V. Mahalingam, N. Chitrapriya, M. Zeller, and K. Natarajan, Polyhedron, 28, 1532–1540 (2009).

    Article  Google Scholar 

  6. 6.

    A. P. Zazhogin, A. I. Komyak, and D. S. Umreiko, Zh. Prikl. Spektrosk., 75, No. 5, 729–732 (2008).

    Google Scholar 

  7. 7.

    A. P. Zazhogin, A. I. Komyak, D. S. Umreiko, and A. A. Lugovskii, Vestn. Beloruss. Gos. Univ., Ser. 1, No. 3, 3–7 (2009).

  8. 8.

    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem., 14, 1347–1363 (1993).

    Article  Google Scholar 

  9. 9.

    http://www.msg.ameslab.gov/GAMESS/GAMESS.html

  10. 10.

    B. M. Bode and M. S. Gordon, J. Mol. Graphics Modell., 16, 133–138 (1998).

    Article  Google Scholar 

  11. 11.

    L. R. Kahn, P. J. Hay, and R. D. Cowan, J. Chem. Phys., 68, 2386–2397 (1978).

    ADS  Article  Google Scholar 

  12. 12.

    T. H. Dunning, Jr., J. Chem. Phys., 90, 1007–1023 (1989).

    ADS  Article  Google Scholar 

  13. 13.

    https://bse.pnl.gov/bse/portal

  14. 14.

    D. Feller, J. Comput. Chem., 17, 1571–1586 (1996).

    Google Scholar 

  15. 15.

    K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, and T. L. Windus, J. Chem. Inf. Model., 47, 1045–1052 (2007).

    Article  Google Scholar 

  16. 16.

    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    ADS  Article  Google Scholar 

  17. 17.

    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 37, 785–789 (1988).

    ADS  Article  Google Scholar 

  18. 18.

    P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem., 98, 11623–11627 (1994).

    Article  Google Scholar 

  19. 19.

    M. B. Shundalau, A. I. Komyak, A. P. Zazhogin, and D. S. Umreiko, Zh. Prikl. Spektrosk., 79, No. 1, 27–36 (2012).

    Google Scholar 

  20. 20.

    M. Hargittai, Chem. Rev., 100, 2233–2301 (2000).

    Article  Google Scholar 

  21. 21.

    V. Typke and M. Dakkouri, J. Mol. Struct., 599, 177–193 (2001).

    ADS  Article  Google Scholar 

  22. 21.

    A. Haaland, K.-G. Martinsen, O. Swang, H. V. Volgen, A. S. Booij, and R. J. M. Konings, J. Chem. Soc. Dalton Trans., 185–190 (1995).

  23. 22.

    J. B. Gruber and H. G. Hecht, J. Chem. Phys., 59, 1713–1720 (1973).

    ADS  Article  Google Scholar 

  24. 23.

    R. Thomas, C. B. Shoemaker, and K. Eriks, Acta Crystallogr., 21, 12–20 (1966).

    Article  Google Scholar 

  25. 24.

    W. Feder, H. Dreizler, H. D. Rudolph, and V. Typke, Z. Naturforsch. A: Astrophys., Phys. Phys. Chem., 24, 266–278 (1969).

    Google Scholar 

  26. 25.

    V. Typke, Z. Naturforsch. A: Phys., Phys. Chem., Kosmophys., 33, 842–847 (1978).

    ADS  Google Scholar 

  27. 26.

    V. Typke, J. Mol. Struct., 384, 35–40 (1996).

    ADS  Article  Google Scholar 

  28. 27.

    M. B. Shundalau, P. S. Chybirai, A. I. Komyak, A. P. Zazhogin, M. A. Ksenofontov, and D. S. Umreiko, Zh. Prikl. Spektrosk., 78, No. 3, 351–361 (2011).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. B. Shundalau.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 79, No. 2, pp. 181–188, March–April, 2012.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shundalau, M.B., Chybirai, P.S., Komyak, A.I. et al. Structure and vibrational IR spectra of a UCl4⋅2DMSO complex. J Appl Spectrosc 79, 165–172 (2012). https://doi.org/10.1007/s10812-012-9579-1

Download citation

Keywords

  • ab initio calculation
  • density functional theory
  • effective core potential
  • IR spectrum
  • uranium tetrachloride (UCl4)
  • dimethylsulfoxide (DMSO)
  • coordination complexes