Advertisement

Journal of Applied Spectroscopy

, Volume 79, Issue 2, pp 165–172 | Cite as

Structure and vibrational IR spectra of a UCl4⋅2DMSO complex

  • M. B. Shundalau
  • P. S. Chybirai
  • A. I. Komyak
  • A. P. Zazhogin
  • D. S. Umreiko
Article

Structural models are designed and spectral characteristics are computed based on DFT calculations for a complex of uranium tetrachloride with two molecules of dimethylsulfoxide (UCl4⋅2DMSO). The calculations were carried out using a B3LYP hybrid functional in the LANL2DZ effective core potential approximation for the uranium atom and a cc-pVDZ all-electron basis set for all other atoms. Two structural variants were found for the complex. In the first of them, which is more stable, DMSO molecules are coordinated to the central uranium atom through oxygen atoms whereas in the second one, whose energy is 225 kJ/mol higher, the coordination proceeds through sulfur atoms. The obtained spectral characteristics are analyzed and compared with experimental data. Spectral features that are characteristic of the complexation process are identified. The adequacy of the proposed models and the agreement between calculation and experiment are demonstrated.

Keywords

ab initio calculation density functional theory effective core potential IR spectrum uranium tetrachloride (UCl4dimethylsulfoxide (DMSO) coordination complexes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. A. Cotton, R. Francis, and W. D. Horrocks, Jr., J. Phys. Chem., 64, 1534–1536 (1960).CrossRefGoogle Scholar
  2. 2.
    M. Tranquille and M. T. Forel, Spectrochim. Acta, Part A , 28, 1305–1320 (1972).ADSCrossRefGoogle Scholar
  3. 3.
    H. Sakurai, C. Miyake, and S. Imoto, J. Inorg. Nucl. Chem., 42, 67–73 (1980).CrossRefGoogle Scholar
  4. 4.
    L. Otero, P. Noblia, D. Gambino, H. Cerecetto, M. Gonzalez, J. A. Ellena, and O. E. Piro, Inorg. Chim. Acta, 344, 85–94 (2003).CrossRefGoogle Scholar
  5. 5.
    V. Mahalingam, N. Chitrapriya, M. Zeller, and K. Natarajan, Polyhedron, 28, 1532–1540 (2009).CrossRefGoogle Scholar
  6. 6.
    A. P. Zazhogin, A. I. Komyak, and D. S. Umreiko, Zh. Prikl. Spektrosk., 75, No. 5, 729–732 (2008).Google Scholar
  7. 7.
    A. P. Zazhogin, A. I. Komyak, D. S. Umreiko, and A. A. Lugovskii, Vestn. Beloruss. Gos. Univ., Ser. 1, No. 3, 3–7 (2009).Google Scholar
  8. 8.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem., 14, 1347–1363 (1993).CrossRefGoogle Scholar
  9. 9.
  10. 10.
    B. M. Bode and M. S. Gordon, J. Mol. Graphics Modell., 16, 133–138 (1998).CrossRefGoogle Scholar
  11. 11.
    L. R. Kahn, P. J. Hay, and R. D. Cowan, J. Chem. Phys., 68, 2386–2397 (1978).ADSCrossRefGoogle Scholar
  12. 12.
    T. H. Dunning, Jr., J. Chem. Phys., 90, 1007–1023 (1989).ADSCrossRefGoogle Scholar
  13. 13.
  14. 14.
    D. Feller, J. Comput. Chem., 17, 1571–1586 (1996).Google Scholar
  15. 15.
    K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, and T. L. Windus, J. Chem. Inf. Model., 47, 1045–1052 (2007).CrossRefGoogle Scholar
  16. 16.
    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).ADSCrossRefGoogle Scholar
  17. 17.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 37, 785–789 (1988).ADSCrossRefGoogle Scholar
  18. 18.
    P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem., 98, 11623–11627 (1994).CrossRefGoogle Scholar
  19. 19.
    M. B. Shundalau, A. I. Komyak, A. P. Zazhogin, and D. S. Umreiko, Zh. Prikl. Spektrosk., 79, No. 1, 27–36 (2012).Google Scholar
  20. 20.
    M. Hargittai, Chem. Rev., 100, 2233–2301 (2000).CrossRefGoogle Scholar
  21. 21.
    V. Typke and M. Dakkouri, J. Mol. Struct., 599, 177–193 (2001).ADSCrossRefGoogle Scholar
  22. 21.
    A. Haaland, K.-G. Martinsen, O. Swang, H. V. Volgen, A. S. Booij, and R. J. M. Konings, J. Chem. Soc. Dalton Trans., 185–190 (1995).Google Scholar
  23. 22.
    J. B. Gruber and H. G. Hecht, J. Chem. Phys., 59, 1713–1720 (1973).ADSCrossRefGoogle Scholar
  24. 23.
    R. Thomas, C. B. Shoemaker, and K. Eriks, Acta Crystallogr., 21, 12–20 (1966).CrossRefGoogle Scholar
  25. 24.
    W. Feder, H. Dreizler, H. D. Rudolph, and V. Typke, Z. Naturforsch. A: Astrophys., Phys. Phys. Chem., 24, 266–278 (1969).Google Scholar
  26. 25.
    V. Typke, Z. Naturforsch. A: Phys., Phys. Chem., Kosmophys., 33, 842–847 (1978).ADSGoogle Scholar
  27. 26.
    V. Typke, J. Mol. Struct., 384, 35–40 (1996).ADSCrossRefGoogle Scholar
  28. 27.
    M. B. Shundalau, P. S. Chybirai, A. I. Komyak, A. P. Zazhogin, M. A. Ksenofontov, and D. S. Umreiko, Zh. Prikl. Spektrosk., 78, No. 3, 351–361 (2011).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • M. B. Shundalau
    • 1
  • P. S. Chybirai
    • 1
  • A. I. Komyak
    • 1
  • A. P. Zazhogin
    • 1
  • D. S. Umreiko
    • 2
  1. 1.Belarusian State UniversityMinskBelarus
  2. 2.A. N. Sevchenko Institute of Applied Physical ProblemsBelarusian State UniversityMinskBelarus

Personalised recommendations