Advertisement

Journal of Applied Spectroscopy

, Volume 79, Issue 1, pp 53–58 | Cite as

Optoacoustic effects in absorbing liquids under the action of pulsed bessel light

  • O. G. RomanovEmail author
  • G. S. Romanov
Article
  • 26 Downloads

The excitation of acoustic oscillations in absorbing liquids exposed to pulsed Bessel light beams has been considered theoretically. Spatial profiles of refractive index diffraction patterns and the kinetics of their excitation and relaxation have been studied based on a numerical solution of continuous medium motion equations in a Lagrangian form and a heat-transfer equation and using the Lorentz–Lorenz formula. The conditions for optimal excitation of spatially localized acoustic pulses have been determined.

Keywords

Bessel light beams optoacoustic effect pulsed laser radiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Durnin, J. Opt. Soc. Am. A, 4, 651–654 (1987).ADSCrossRefGoogle Scholar
  2. 2.
    N. E. Andreev, Yu. A. Aristov, L. Ya. Polonskii, and L. N. Pyatnitskii, Zh. Eksp. Teor. Fiz., 100, 1756–1766 (1991).ADSGoogle Scholar
  3. 3.
    L. Ya. Margolin, Kvantovaya Élektron. (Moscow), 23, No. 3, 281-283 (1996).MathSciNetGoogle Scholar
  4. 4.
    Z. Bouchal, Czech. J. Phys., 53, No. 7, 537-578 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    N. S. Kazak, E. G. Katranzhi, I. A. Utkin, A. A. Ryzhevich, and A. N. Khilo, Zh. Prikl. Spektrosk., 71, No. 5, 640–643 (2004).Google Scholar
  6. 6.
    B. B. Sevruk, Zh. Prikl. Spektrosk., 72, No. 3, 358–365 (2005).Google Scholar
  7. 7.
    P. A. Khilo and E. S. Petrova, Zh. Prikl. Spektrosk., 72, No. 6, 752-755 (2005).Google Scholar
  8. 8.
    V. Pyragaite, K. Regelskis, V. Smilgevicius, and A. Stabinis, Opt. Commun., 257, 139–145 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    B. B. Sevruk, Zh. Prikl. Spektrosk., 73, No. 5, 626–630 (2006).Google Scholar
  10. 10.
    P. A. Apanasevich, R. V. Chulkov, and G. I. Timofeeva, Zh. Prikl. Spektrosk., 75, No. 3, 336–341 (2008).Google Scholar
  11. 11.
    L. N. Pyatnitskii, Usp. Fiz. Nauk, 180, No. 2, 165–184 (2010).MathSciNetCrossRefGoogle Scholar
  12. 12.
    E. V. Ivakin, A. M. Lazaruk, I. P. Petrovich, and A. S. Rubanov, Kvantovaya Élektron. (Moscow), 7, 1382 (1977).CrossRefGoogle Scholar
  13. 13.
    L. M. Lyamshev, Laser Thermo-Optical Excitation of Sound [in Russian], Nauka, Moscow (1989).Google Scholar
  14. 14.
    O. G. Romanov and G. S. Romanov, Zh. Prikl. Spektrosk., 78, No. 3, 378–383 (2011).Google Scholar
  15. 15.
    Ya. B. Zel?dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Effects [in Russian], Nauka, Moscow (1966).Google Scholar
  16. 16.
    G. I. Kanel’, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-Wave Effects in Condensed Media [in Russian], Yanus-K, Moscow (1996).Google Scholar
  17. 17.
    M. Born and E. Wolf, Principles of Optics [in Russian], Nauka, Moscow (1970).Google Scholar
  18. 18.
    R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Valence Problems, Interscience Publ., New York (1967).Google Scholar
  19. 19.
    V. K. Saul’ev, Integration of Parabolic Equations by the Grid Method [in Russian], Fizmatgiz, Moscow (1960).Google Scholar
  20. 20.
    V. I. Stabnikov, I. M. Roiter, and T. B. Protsyuk, Ethyl Alcohol [in Russian], Pishch. Promst., Moscow (1976).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.Belarusian State UniversityMinskBelarus
  2. 2.Heat and Mass Transfer Institute, National Academy of Sciences of BelarusMinskBelarus

Personalised recommendations