Structure of the complex UCl4∙2DMF by vibrational infrared spectroscopy and density functional theory

Structural models are designed and spectral characteristics are computed based on DFT calculations for a complex of UCl4 with two molecules of DMF (UCl4∙2DMF). The calculations were carried out using a B3LYP hybrid functional in the LANL2DZ effective core potential approximation for the uranium atom and an allelectron basis set, cc-pVDZ, for all other atoms with partial force-field scaling. Two structural variants were found for the complex. The first structure is more stable, has C i symmetry, and is characterized by trans arrangement of ligands. The energy of the second structure of C2 symmetry (with cis arrangement of ligands) is greater by 46 kJ/mol. The formation of the complex is shown to be accompanied by significant changes in the structure of UCl4. The obtained spectral characteristics are analyzed and compared with experimental data. The adequacy of the proposed models and the agreement between calculation and experiment are demonstrated.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. V. Volod’ko, A. I. Komyak, and D. S. Umreiko, Uranyl Compounds [in Russian], 1, Bel. Gos. Univ., Minsk (1981).

    Google Scholar 

  2. 2.

    D. S. Umreiko, T. A. Dik, A. P. Zazhogin, A. I. Komyak, and V. V. Syt’ko, Spectra and Structure of Uranyl Complexes [in Russian], Bel. Gos. Univ., Minsk (2004).

    Google Scholar 

  3. 3.

    A. P. Zazhogin, A. I. Komyak, D. S. Umreiko, and A. A. Lugovskii, Vestn. Beloruss. Gos. Univ., Ser. 1: Fiz., Mat., Inf., No. 3, 3–7 (2009).

  4. 4.

    A. P. Zazhogin, A. I. Komyak, and D. S. Umreiko, Zh. Prikl. Spektrosk., 75, No. 5, 729–732 (2008).

    Google Scholar 

  5. 5.

    A. I. Komyak, A. P. Zazhogin, D. S. Umreiko, and A. A. Lugovskii, Zh. Prikl. Spektrosk., 76, No. 2, 182–187 (2009).

    Google Scholar 

  6. 6.

    M. B. Shundalau, P. S. Chibirai, A. I. Komyak, A. P. Zazhogin, M. A. Ksenofontov, and D. S. Umreiko, Zh. Prikl. Spektrosk., 78, No. 3, 351–361 (2011).

    Google Scholar 

  7. 7.

    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem., 14, 1347– 1363 (1993).

    Article  Google Scholar 

  8. 8.

    http://www.msg.ameslab.gov/GAMESS/GAMESS.html

  9. 9.

    B. M. Bode and M. S. Gordon, J. Mol. Graphics Modell., 16, 133–138 (1998).

    Article  Google Scholar 

  10. 10.

    L. R. Kahn, P. J. Hay, and R. D. Cowan, J. Chem. Phys., 68, 2386–2397 (1978).

    ADS  Article  Google Scholar 

  11. 11.

    T. H. Dunning, Jr., J. Chem. Phys., 90, 1007–1023 (1989).

    ADS  Article  Google Scholar 

  12. 12.

    https://bse.pnl.gov/bse/portal

  13. 13.

    D. Feller, J. Comput. Chem., 17, 1571–1586 (1996).

    Google Scholar 

  14. 14.

    K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, and T. L. Windus, J. Chem. Inf. Model., 47, 1045–1052 (2007).

    Article  Google Scholar 

  15. 15.

    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    ADS  Article  Google Scholar 

  16. 16.

    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Res., 37, 785–789 (1988).

    ADS  Article  Google Scholar 

  17. 17.

    P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem., 98, 11623–11627 (1994).

    Article  Google Scholar 

  18. 18.

    V. V. Sivchik and K. M. Grushetskii, Zh. Prikl. Spektrosk., 19, No. 2, 317–319 (1973).

    Google Scholar 

  19. 19.

    I. R. Beattie, P. J. Jones, K. R. Millington, and A. D. Wilson, J. Chem. Soc. Dalton Trans., 2759–2762 (1988).

  20. 20.

    A. Haaland, K.-G. Martinsen, O. Swang, H. V. Volgen, A. S. Booij, and R. J. M. Konings, J. Chem. Soc. Dalton Trans., 185–190 (1995).

  21. 21.

    A. Haaland, K.-G. Martinsen, and R. J. M. Konings, J. Chem. Soc. Dalton Trans., 2473–2474 (1997).

  22. 22.

    R. J. M. Konings and D. L. Hildenbrand, J. Alloys Cmpd., 271–273, 583–586 (1998).

  23. 23.

    E. R. Batista, R. L. Martin, and P. J. Hay, J. Chem. Phys., 121, 11104–11111 (2004).

    ADS  Article  Google Scholar 

  24. 24.

    J. E. Peralta, E. R. Batista, G. E. Scuseria, and R. L. Martin, J. Chem. Theory Comput., 1, 612–616 (2005).

    Article  Google Scholar 

  25. 25.

    Y. Zhang, Y. Li, and C. Hao, Mol. Phys., 106, 1907–1912 (2008).

    ADS  Article  Google Scholar 

  26. 26.

    J. B. Gruber and H. G. Hecht, J. Chem. Phys., 59, 1713–1720 (1973).

    ADS  Article  Google Scholar 

  27. 27.

    P. M. Boerrigter, J. G. Snijders, and J. M. Dyke, J. Electron Spectrosc. Relat. Phenom., 46, 43–53 (1988).

    Article  Google Scholar 

  28. 28.

    V. N. Bukhmarina, Y. B. Predtechensky, and L. D. Shcherba, J. Mol. Struct., 218, 33–38 (1990).

    ADS  Article  Google Scholar 

  29. 29.

    R. J. M. Konings, A. S. Booij, A. Kovacs, G. V. Girichev, N. I. Giricheva, and O. G. Krasnova, J. Mol. Struct., 378, 121–131 (1996).

    ADS  Article  Google Scholar 

  30. 30.

    Y. Zhang, Y. Li, and Y. Cao, J. Mol. Struct.: THEOCHEM, 864, 85–88 (2008).

    Article  Google Scholar 

  31. 31.

    D. L. Hildenbrand, Pure Appl. Chem., 60, 303–307 (1988).

    Article  Google Scholar 

  32. 32.

    D. L. Hildenbrand, K. H. Lau, and R. D. Brittain, J. Chem. Phys., 94, 8270–8275 (1991).

    ADS  Article  Google Scholar 

  33. 33.

    M. Hargittai, Chem. Rev., 100, 2233–2301 (2000).

    Article  Google Scholar 

  34. 34.

    H. Ohtaki, S. Itoh, T. Yamaguchi, S. Ishiguro, and B. M. Rode, Bull. Chem. Soc. Jpn., 56, 3406–3409 (1983).

    Article  Google Scholar 

  35. 35.

    G. Schultz and I. Hargittai, J. Phys. Chem., 97, 4966–4969 (1993).

    Article  Google Scholar 

  36. 36.

    H. Borrmann, I. Persson, M. Sandstrom, and C. M. V. Stalhandske, J. Chem. Soc. Perkin Trans. 2, 393–402 (2000).

    Google Scholar 

  37. 37.

    X. Zhou, J. A. Krauser, D. R. Tate, A. S. VanBuren, J. A. Clark, P. R. Moody, and R. Liu, J. Phys. Chem., 100, 16822–16827 (1996).

    Google Scholar 

  38. 38.

    C. M. V. Stalhandske, J. Mink, M. Sandstrom, I. Papai, and P. Johansson, Vib. Spectrosc., 14, 207–227 (1997).

    Article  Google Scholar 

  39. 39.

    R. Vargas, J. Garza, D. A. Dixon, and B. P. Hay, J. Am. Chem. Soc., 122, 4750–4755 (2000).

    Article  Google Scholar 

  40. 40.

    J. Ireta, J. Neugebauer, and M. Scheffler, J. Phys. Chem. A, 108, 5692–5698 (2004).

    Article  Google Scholar 

  41. 41.

    T. C. Jao, I. Scott, and D. Steele, J. Mol. Spectrosc., 92, 1–17 (1982).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. B. Shundalau.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 79, No. 1, pp. 27–36, January–February, 2012.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shundalau, M.B., Komyak, A.I., Zazhogin, A.P. et al. Structure of the complex UCl4∙2DMF by vibrational infrared spectroscopy and density functional theory. J Appl Spectrosc 79, 22–30 (2012). https://doi.org/10.1007/s10812-012-9559-5

Download citation

Keywords

  • ab initio calculations
  • density functional theory
  • effective core potential
  • force-field scaling
  • infrared spectrum
  • UCl4
  • DMF
  • coordination complexes