Advertisement

Journal of Applied Spectroscopy

, Volume 79, Issue 1, pp 22–30 | Cite as

Structure of the complex UCl4∙2DMF by vibrational infrared spectroscopy and density functional theory

  • M. B. Shundalau
  • A. I. Komyak
  • A. P. Zazhogin
  • D. S. Umreiko
Article

Structural models are designed and spectral characteristics are computed based on DFT calculations for a complex of UCl4 with two molecules of DMF (UCl4∙2DMF). The calculations were carried out using a B3LYP hybrid functional in the LANL2DZ effective core potential approximation for the uranium atom and an allelectron basis set, cc-pVDZ, for all other atoms with partial force-field scaling. Two structural variants were found for the complex. The first structure is more stable, has C i symmetry, and is characterized by trans arrangement of ligands. The energy of the second structure of C2 symmetry (with cis arrangement of ligands) is greater by 46 kJ/mol. The formation of the complex is shown to be accompanied by significant changes in the structure of UCl4. The obtained spectral characteristics are analyzed and compared with experimental data. The adequacy of the proposed models and the agreement between calculation and experiment are demonstrated.

Keywords

ab initio calculations density functional theory effective core potential force-field scaling infrared spectrum UCl4 DMF coordination complexes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. V. Volod’ko, A. I. Komyak, and D. S. Umreiko, Uranyl Compounds [in Russian], 1, Bel. Gos. Univ., Minsk (1981).Google Scholar
  2. 2.
    D. S. Umreiko, T. A. Dik, A. P. Zazhogin, A. I. Komyak, and V. V. Syt’ko, Spectra and Structure of Uranyl Complexes [in Russian], Bel. Gos. Univ., Minsk (2004).Google Scholar
  3. 3.
    A. P. Zazhogin, A. I. Komyak, D. S. Umreiko, and A. A. Lugovskii, Vestn. Beloruss. Gos. Univ., Ser. 1: Fiz., Mat., Inf., No. 3, 3–7 (2009).Google Scholar
  4. 4.
    A. P. Zazhogin, A. I. Komyak, and D. S. Umreiko, Zh. Prikl. Spektrosk., 75, No. 5, 729–732 (2008).Google Scholar
  5. 5.
    A. I. Komyak, A. P. Zazhogin, D. S. Umreiko, and A. A. Lugovskii, Zh. Prikl. Spektrosk., 76, No. 2, 182–187 (2009).Google Scholar
  6. 6.
    M. B. Shundalau, P. S. Chibirai, A. I. Komyak, A. P. Zazhogin, M. A. Ksenofontov, and D. S. Umreiko, Zh. Prikl. Spektrosk., 78, No. 3, 351–361 (2011).Google Scholar
  7. 7.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem., 14, 1347– 1363 (1993).CrossRefGoogle Scholar
  8. 8.
  9. 9.
    B. M. Bode and M. S. Gordon, J. Mol. Graphics Modell., 16, 133–138 (1998).CrossRefGoogle Scholar
  10. 10.
    L. R. Kahn, P. J. Hay, and R. D. Cowan, J. Chem. Phys., 68, 2386–2397 (1978).ADSCrossRefGoogle Scholar
  11. 11.
    T. H. Dunning, Jr., J. Chem. Phys., 90, 1007–1023 (1989).ADSCrossRefGoogle Scholar
  12. 12.
  13. 13.
    D. Feller, J. Comput. Chem., 17, 1571–1586 (1996).Google Scholar
  14. 14.
    K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, and T. L. Windus, J. Chem. Inf. Model., 47, 1045–1052 (2007).CrossRefGoogle Scholar
  15. 15.
    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).ADSCrossRefGoogle Scholar
  16. 16.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Res., 37, 785–789 (1988).ADSCrossRefGoogle Scholar
  17. 17.
    P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem., 98, 11623–11627 (1994).CrossRefGoogle Scholar
  18. 18.
    V. V. Sivchik and K. M. Grushetskii, Zh. Prikl. Spektrosk., 19, No. 2, 317–319 (1973).Google Scholar
  19. 19.
    I. R. Beattie, P. J. Jones, K. R. Millington, and A. D. Wilson, J. Chem. Soc. Dalton Trans., 2759–2762 (1988).Google Scholar
  20. 20.
    A. Haaland, K.-G. Martinsen, O. Swang, H. V. Volgen, A. S. Booij, and R. J. M. Konings, J. Chem. Soc. Dalton Trans., 185–190 (1995).Google Scholar
  21. 21.
    A. Haaland, K.-G. Martinsen, and R. J. M. Konings, J. Chem. Soc. Dalton Trans., 2473–2474 (1997).Google Scholar
  22. 22.
    R. J. M. Konings and D. L. Hildenbrand, J. Alloys Cmpd., 271–273, 583–586 (1998).Google Scholar
  23. 23.
    E. R. Batista, R. L. Martin, and P. J. Hay, J. Chem. Phys., 121, 11104–11111 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    J. E. Peralta, E. R. Batista, G. E. Scuseria, and R. L. Martin, J. Chem. Theory Comput., 1, 612–616 (2005).CrossRefGoogle Scholar
  25. 25.
    Y. Zhang, Y. Li, and C. Hao, Mol. Phys., 106, 1907–1912 (2008).ADSCrossRefGoogle Scholar
  26. 26.
    J. B. Gruber and H. G. Hecht, J. Chem. Phys., 59, 1713–1720 (1973).ADSCrossRefGoogle Scholar
  27. 27.
    P. M. Boerrigter, J. G. Snijders, and J. M. Dyke, J. Electron Spectrosc. Relat. Phenom., 46, 43–53 (1988).CrossRefGoogle Scholar
  28. 28.
    V. N. Bukhmarina, Y. B. Predtechensky, and L. D. Shcherba, J. Mol. Struct., 218, 33–38 (1990).ADSCrossRefGoogle Scholar
  29. 29.
    R. J. M. Konings, A. S. Booij, A. Kovacs, G. V. Girichev, N. I. Giricheva, and O. G. Krasnova, J. Mol. Struct., 378, 121–131 (1996).ADSCrossRefGoogle Scholar
  30. 30.
    Y. Zhang, Y. Li, and Y. Cao, J. Mol. Struct.: THEOCHEM, 864, 85–88 (2008).CrossRefGoogle Scholar
  31. 31.
    D. L. Hildenbrand, Pure Appl. Chem., 60, 303–307 (1988).CrossRefGoogle Scholar
  32. 32.
    D. L. Hildenbrand, K. H. Lau, and R. D. Brittain, J. Chem. Phys., 94, 8270–8275 (1991).ADSCrossRefGoogle Scholar
  33. 33.
    M. Hargittai, Chem. Rev., 100, 2233–2301 (2000).CrossRefGoogle Scholar
  34. 34.
    H. Ohtaki, S. Itoh, T. Yamaguchi, S. Ishiguro, and B. M. Rode, Bull. Chem. Soc. Jpn., 56, 3406–3409 (1983).CrossRefGoogle Scholar
  35. 35.
    G. Schultz and I. Hargittai, J. Phys. Chem., 97, 4966–4969 (1993).CrossRefGoogle Scholar
  36. 36.
    H. Borrmann, I. Persson, M. Sandstrom, and C. M. V. Stalhandske, J. Chem. Soc. Perkin Trans. 2, 393–402 (2000).Google Scholar
  37. 37.
    X. Zhou, J. A. Krauser, D. R. Tate, A. S. VanBuren, J. A. Clark, P. R. Moody, and R. Liu, J. Phys. Chem., 100, 16822–16827 (1996).Google Scholar
  38. 38.
    C. M. V. Stalhandske, J. Mink, M. Sandstrom, I. Papai, and P. Johansson, Vib. Spectrosc., 14, 207–227 (1997).CrossRefGoogle Scholar
  39. 39.
    R. Vargas, J. Garza, D. A. Dixon, and B. P. Hay, J. Am. Chem. Soc., 122, 4750–4755 (2000).CrossRefGoogle Scholar
  40. 40.
    J. Ireta, J. Neugebauer, and M. Scheffler, J. Phys. Chem. A, 108, 5692–5698 (2004).CrossRefGoogle Scholar
  41. 41.
    T. C. Jao, I. Scott, and D. Steele, J. Mol. Spectrosc., 92, 1–17 (1982).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • M. B. Shundalau
    • 1
  • A. I. Komyak
    • 1
  • A. P. Zazhogin
    • 1
  • D. S. Umreiko
    • 2
  1. 1.Belarusian State UniversityMinskBelarus
  2. 2.A. N. Sevchenko Institute of Applied Physical ProblemsBelarusian State UniversityMinskBelarus

Personalised recommendations