Skip to main content
Log in

Spectrophotometric determination of ofloxacin in pharmaceuticals by redox reaction

  • Published:
Journal of Applied Spectroscopy Aims and scope

Two simple spectrophotometric methods have been developed to analyze ofloxacin (OFX) in pharmaceuticals. The methods are based on the oxidation of OFX by a measured excess of cerium(IV) sulfate in H2SO4 medium. This was followed by the determination of the unreacted oxidant by reacting it with either p-toluidine (p-TD) and measuring the absorbance at 525 nm (method A) or o-dianisidine (o-DA) and measuring the absorbance at 470 nm (method B). In both methods, the amount of cerium(IV) sulfate reacted corresponds to the amount of OFX. Calibration graphs were linear over the ranges of 0–120 and 0–4 g/ml OFX for methods A and B, respectively. The calculated molar absorptivity (2.34⋅103 and 5.99⋅104), Sandell sensitivity, and limit of quantification for the methods are reported. The intra-day precision (%RSD) and accuracy (%RE) were < 8.0 and ≤ 4.0%, respectively, and the inter-day RSD and RE values were within 5 and 4.0%, respectively. The applicability of the methods was demonstrated by determining OFX in tablets with an accuracy (%RE) of < 3% and precision (%RSD) of ≤2.65%. The accuracy of the methods was further ascertained by recovery experiments via a standard-addition procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Sat, U. Matsura, M. Inone, T. Ueno, Y. Osada, H. Ogawa, M. Mitshuhashi, Antimicrob. Agents Chemother., 22, 548 (1982).

    Google Scholar 

  2. F. A. El-Yazbi, Spectr. Lett., 25, 279–291 (1992).

    Article  ADS  Google Scholar 

  3. Q. J. Gong, J. L. Quiao, L. M. Du, C. Dong, Talanta, 53, 359–365 (2000).

    Article  Google Scholar 

  4. A. Le Coguic, R. Bidault, R. Farinotti, A. Dauphin, J. Chromatogr., 434, 320–323 (1988).

    Article  Google Scholar 

  5. O. Okazaki, H. Aoki, H. Hakusui, J. Chromatogr., 563, 313–322 (1991).

    Article  Google Scholar 

  6. G. Carlucci, P. Mazzeo, T. Fantozzi, Anal. Lett., 26, 2193–2201 (1993).

    Article  Google Scholar 

  7. V. M. Shinde, B. S. Desai, N. M. Tendolkar, Indian Drugs, 35, 715–717 (1998).

    Google Scholar 

  8. U. P. Halkar, P. B. Ankalkope, Indian Drugs, 37, 585–588 (2000).

    Google Scholar 

  9. M. S. Ali, M. Ghori, A. Saeed, J. Chromatogr. Sci., 40, 429–433 (2002).

    Google Scholar 

  10. A. J. N. Groenveld, J. R. B. Brouwers, Pharm. World Sci., 8, 79–84 (1986).

    Google Scholar 

  11. R. R. Kalta, R. Sharma, S. C. Chaturvedi, Ind. J. Pharm. Sci., 70, 491–494 (2008).

    Article  Google Scholar 

  12. K. P. Chan, K. O. Chu, W. W-K. Lai, K. W. Choy, C. C. Wang, D. S. C. Lam, C. P. Pang, Anal. Biochem., 353, 30–36 (2006).

    Article  Google Scholar 

  13. T. Ohkubo, M. Kudo, K. Sugawara, Anal. Sci., 7, 741–743 (1991).

    Article  Google Scholar 

  14. M. A. Gracia, C. Solans, A. Calvo, M. Royo, E. Hernandez, R. Rey, M. A. Bregante, Chromatographia, 55, 431–434 (2002).

    Article  Google Scholar 

  15. B. Srividya, R. M. Cardoza, P. D. Amin, Indian Drugs, 40, 41–43 (2003).

    Google Scholar 

  16. S. W. Sun, A. L. Wu, J. Liq. Chromatogr. Relat. Technol., 22, 281–296 (1999).

    Article  Google Scholar 

  17. C. Horstkoetter, G. Blaschke, J. Chromatogr. B., 754, 169–178 (2000).

    Google Scholar 

  18. S. S. Zhang, H. Liu, Y. J. Wu, C. L. Yu, Analyst, 126, 441–445 (2001).

    Article  ADS  Google Scholar 

  19. A. Tamer, Anal. Chim. Acta, 231, 129–131 (1990).

    Article  Google Scholar 

  20. M. Tuncel, Z. Atkosar, Pharmazie, 47, 642–643 (1992).

    Google Scholar 

  21. G. Zhou, J. Pan, Anal. Chim. Acta, 307, 49–53 (1995).

    Article  Google Scholar 

  22. M. Rizk, F. Belal, F. Aly, N. El-Enany, Talanta, 46, 83–89 (1998).

    Article  Google Scholar 

  23. J. Wu, H. Zhao, L. Wei, T. Z. Ai, X. Z. Dong, Fenxi Huaxue, 29, 1106 (2001).

    Google Scholar 

  24. F. Paul, J. L. Adcock, Anal. Chim. Acta, 541, 3–12 (2005).

    Article  Google Scholar 

  25. S. Hanwen, L. Liqing, C. Xueyan, Anal. Sci., 22, 1145–1149 (2006).

    Article  Google Scholar 

  26. Y. Rao, Y. Tong, X. R. Zhang, G. Luo, W. Baeyens, J. Fluores., 17, 481–491 (2007).

    Article  Google Scholar 

  27. L. Yi, H. Zhao, S. Chen, L. Jin, D. Zheng, Z. Wu, Talanta, 61, 403–409 (2003).

    Article  Google Scholar 

  28. Y. D. Liang, J. F. Song, X. F. Yang, Anal. Chim. Acta, 510, 21–28 (2004).

    Article  Google Scholar 

  29. B. Li, Z. Zhang, L. Zhao, Ch. Xu, Talanta, 57, 765–771 (2002).

    Article  Google Scholar 

  30. L. da Silveira Ev., E. E. S. Schapoval, J. Pharm. Biomed. Anal., 27, 91–96 (2002).

    Article  Google Scholar 

  31. British Pharmacopoeia. Vol. III, Her Majesty’s Stationery office, London, 1357 (2003).

  32. United States Pharmacopoeia XXII, National Formulary XVII, Rockville, USA Convention, 912 (1990).

  33. European Pharmacopoeia. EDQM, Council of Europe, Strasbourg, France, 5, 2131 (2005).

  34. P. U. Patel, B. N. Suhagia, M. M. Patel, G. C. Patel, G. N. Patel, Indian Pharmacist, 6, 59–61 (2007).

    Google Scholar 

  35. Y. M. Issa, F. M. Abdel-Gawad, M. A. Abou Table, H. M. Hussein, Anal. Lett., 30, 2071–2084 (1997).

    Article  Google Scholar 

  36. C. S. P. Sastry, K. R. Rao, D. Siva Prasad, Talanta, 42, 311–316 (1995).

    Article  Google Scholar 

  37. C. J. Eboka, S. O. Aigbavboa, J. O. Akerele, J. Antimicrob. Chemother., 39, 639–641 (1997).

    Article  Google Scholar 

  38. S. C. Mathur, Y. Kumar, N. Murugesan, Y. K. S. Rathore, P. D. Sethi, Indian Drugs, 29, 376–377 (1992).

    Google Scholar 

  39. M. S. Soledad, M. I. Albero, C. Sanchez-Pedreno, M. S. Abuherba, Eur. J. Pharm. Biopharm., 61, 87–93 (2005).

    Article  Google Scholar 

  40. C. S. P. Sastry, K. R. Rao, D. S. Prasad, Indian Drugs, 32, 172–175 (1995).

    Google Scholar 

  41. K. B. Vinay, H. D. Revanasiddappa, M. R. Divya, N. Rajendraprasad, Ecle. Quim., 34, 65–78 (2009).

    Google Scholar 

  42. J. Bassett, R. C. Denney, G. H. Jeffery, J. Mendham, Vogel’s Textbook of Quantitative Analysis, 4th ed., Longman Group Limited, 598 (1978).

  43. A. K. Batalian, S. M. Polyakova, Zh. Khim., 14, 178 (1963), Abstract No 19G15.

    Google Scholar 

  44. Z. Marczenko, Separation and Spectrophotometric Determination of Elements, Transl. Ed. M. Masson, Ellis Horwood Limited Publ., 222 (1986).

  45. Z. Holzbecher, L. Davis, M. Kral, L. Sucha, and F. Vlacil, Handbook of Organic Reagents in Inorganic Analysis, Ellis Horwood Series in Analytical Chemistry, J. Wiley & Sons, New York, London, Sydney, Toronto, 364 (1976).

  46. Int. Conf. Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, ICH Harmonised Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology Q2(R 1), Complementary Guideline on Methodology dated 06 November 1996, incorporated in November 2005, London.

  47. J. Inczedy, T. Lengyel, A. M. Ure, IUPAC Compendium of Analytical Nomenclature: Definitive Rules, Blackwell Science Inc., Boston (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Basavaiah.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 78, No. 3, pp. 410–418, May–June, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramesh, P.J., Basavaiah, K., Rajendraprasad, N. et al. Spectrophotometric determination of ofloxacin in pharmaceuticals by redox reaction. J Appl Spectrosc 78, 383–391 (2011). https://doi.org/10.1007/s10812-011-9480-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-011-9480-3

Keywords

Navigation