Advertisement

Modeling of structures and calculation of IR vibrational spectra of N,N-dimethylformamide dimers by density functional theory

  • M. B. Shundalau
  • P. S. Chybirai
  • A. I. Komyak
  • A. P. Zazhogin
  • M. A. Ksenofontov
  • D. S. Umreiko
Article

We present results of ab initio and DFT calculations of the structure and IR vibrational spectra of the monomer and dimers of N,N-dimethylformamide (DMF). The calculations were carried out in the B3LYP/cc-pVDZ approximation with subsequent force-field scaling. The calculated characteristics of the vibrational spectra of DMF show satisfactory agreement with experimental values, allowing them to be used in spectral and structural analysis.

Keywords

ab initio calculation density functional theory IR spectrum N,N-dimethylformamide (DMF) forcefield scaling 

References

  1. 1.
    L. V. Vilkov, P. A. Akishin, and V. M. Presnyakova, Zh. Strukt. Khim., 3, 5–9 (1962).Google Scholar
  2. 2.
    G. Durgaprasad, D. N. Sathyanarayana, and C. C. Patel, Bull. Chem. Soc. Jpn., 44, 316–322 (1971).CrossRefGoogle Scholar
  3. 3.
    T. C. Jao, I. Scott, and D. Steele, J. Mol. Spectrosc., 92, 1–17 (1982).ADSCrossRefGoogle Scholar
  4. 4.
    H. Ohtaki, S. Itoh, T. Yamaguchi, S. Ishiguro, and B. M. Rode, Bull. Chem. Soc. Jpn., 56, 3406–3409 (1983).CrossRefGoogle Scholar
  5. 5.
    D. Steele and A. Quatermain, Spectrochim. Acta, Part A, 43, 781–789 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    G. Schultz and I. Hargittai, J. Phys. Chem., 97, 4966–4969 (1993).CrossRefGoogle Scholar
  7. 7.
    C. M. V. Stålhandske, J. Mink, M. Sandström, I. Pápai, and P. Johansson, Vib. Spectrosc., 14, 207–227 (1997).CrossRefGoogle Scholar
  8. 8.
    H. Borrmann, I. Persson, M. Sandstrom, and C. M. V. Stålhandske, J. Chem. Soc. Perkin Trans., 2, 393–402 (2000).Google Scholar
  9. 9.
    M. Malathi, R. Sabesan, and S. Krishnan, Curr. Sci., 86, 838–842 (2004).Google Scholar
  10. 10.
    X. Zhou, J. A. Krauser, D. R. Tate, A. S. Van Buren, J. A. Clark, P. R. Moody, and R. Liu, J. Phys. Chem., 100, 16,822–16,827 (1996).Google Scholar
  11. 11.
    R. Vargas, J. Garza, D. A. Dixon, and B. P. Hay, J. Am. Chem. Soc., 122, 4750–4755 (2000).CrossRefGoogle Scholar
  12. 12.
    J. Ireta, J. Neugebauer, and M. Scheffler, J. Phys. Chem. A, 108, 5692–5698 (2004).CrossRefGoogle Scholar
  13. 13.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem., 14, 1347–1363 (1993).CrossRefGoogle Scholar
  14. 14.
  15. 15.
    B. M. Bode and M. S. Gordon, J. Mol. Graphics Modell., 16, 133–138 (1998).CrossRefGoogle Scholar
  16. 16.
    T. H. Dunning, Jr., J. Chem. Phys., 90, 1007–1023 (1989).ADSCrossRefGoogle Scholar
  17. 17.
    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).ADSCrossRefGoogle Scholar
  18. 18.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 37, 785–789 (1988).ADSCrossRefGoogle Scholar
  19. 19.
    P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem., 98, 11,623–11,627 (1994).CrossRefGoogle Scholar
  20. 20.
    A. F. Jalbout, F. Nazari, and L. Turker, J. Mol. Struct. (THEOCHEM), 671, 1–21 (2004).CrossRefGoogle Scholar
  21. 21.
    D. Xu and A. L. Cooksy, J. Mol. Struct. (THEOCHEM), 815, 119–125 (2007).CrossRefGoogle Scholar
  22. 22.
    L. Margules, M. Carvajal, and J. Demaison, J. Mol. Spectrosc., 247, 160–166 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    M. B. Shundalau, G. A. Pitsevich, M. A. Ksenofontov, and D. S. Umreiko, Zh. Prikl. Spektrosk., 76, No. 3, 349–357 (2009).Google Scholar
  24. 24.
    M. B. Shundalau, G. A. Pitsevich, M. A. Ksenofontov, and D. S. Umreiko, Zh. Prikl. Spektrosk., 76, No. 4, 485–492 (2009).Google Scholar
  25. 25.
    G. A. Pitsevich, M. B. Shundalau, M. A. Ksenofontov, and D. S. Umreiko, Global J. Anal. Chem., 2, in press (2011).Google Scholar
  26. 26.
    V. V. Sivchik and K. M. Grushetskii, Zh. Prikl. Spektrosk., 19, No. 2, 317–319 (1973).Google Scholar
  27. 27.
    C. C. Costain and J. M. Dowling, J. Chem. Phys., 32, 158–165 (1960).ADSCrossRefGoogle Scholar
  28. 28.
    E. Hirota, R. Sugisaki, C. J. Nielsen, and G. O. Sorensen, J. Mol. Spectrosc., 49, 251–267 (1974).ADSCrossRefGoogle Scholar
  29. 29.
    M. Kitano and K. Kuchitsu, Bull. Chem. Soc. Jpn., 47, 67–72 (1974).CrossRefGoogle Scholar
  30. 30.
    H. Ohtaki, A. Funaki, B. M. Rode, and G. J. Reibnegger, Bull. Chem.. Soc. Jpn., 56, 2116–2121 (1983).CrossRefGoogle Scholar
  31. 31.
    A. V. Kryvda, V. G. Gerasimov, S. F. Dyubko, E. A. Alekseev, and R. A. Motiyenko, J. Mol. Spectrosc., 254, 28–32 (2009).ADSCrossRefGoogle Scholar
  32. 32.
    I. Suzuki, Bull. Chem. Soc. Jpn., 35, 540–551 (1962).CrossRefGoogle Scholar
  33. 33.
    M. Kitano and K. Kuchitsu, Bull. Chem. Soc. Jpn., 47, 631–634 (1974).CrossRefGoogle Scholar
  34. 34.
    Y. Kawashima, T. Usami, R. D. Suenram, G. Y. Golubiatnikov, and E. Hirota, J. Mol. Spectrosc., 263, 11–20 (2010).ADSCrossRefGoogle Scholar
  35. 35.
    S. Shin, A. Kurawaki, Y. Hamada, K. Shinyu, K. Ohno, A. Tohara, and M. Sato, J. Mol. Struct., 791, 30–40 (2006).ADSCrossRefGoogle Scholar
  36. 36.
    S. F. Boys and F. Bernardi, Mol. Phys., 19, 553–566 (1970).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • M. B. Shundalau
    • 1
  • P. S. Chybirai
    • 1
  • A. I. Komyak
    • 1
  • A. P. Zazhogin
    • 1
  • M. A. Ksenofontov
    • 2
  • D. S. Umreiko
    • 2
  1. 1.Belarusian State UniversityMinskBelarus
  2. 2.A. N. Sevchenko Institute of Applied Physical Problems, Belarusian State UniversityMinskBelarus

Personalised recommendations