Skip to main content

Advertisement

Log in

Optical model of the atmosphere for correcting IR measurements by satellite and ground-based remote sensing systems

  • Published:
Journal of Applied Spectroscopy Aims and scope

The basic principles for constructing an optical model of the atmosphere in a region of Belarus are discussed for use in atmospheric correction of signals detected by satellite and ground-based IR systems. The input data for the model are the near-earth or altitude-integrated optical and meteorological parameters of the atmosphere and the season. These are used to calculate the height distributions of the air temperature, concentrations of atmospheric gases, concentration of aerosols in the troposphere, and the microphysical parameters of background and post-volcanic aerosols in the stratosphere. A set of programs for calculating the spectral transmission of the atmosphere on personal computer is described. The model is compared with ground-based measurements of the spectral transmission along a horizontal path in the atmosphere and satellite-based measurements of the brightness temperature of the atmosphere. An example of the use of these programs to estimate the thresholds for detection of distant objects by IR search and survey systems is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Meteorological Organization, World Climate Research Programme: A reliminary Cloudless Standard Atmosphere for Radiation Computation, Geneva, Switzerland, Report WCP-112, WMO/TD-24 (1986).

  2. A. Berk, L. S. Bernstein, and D. C. Robertson, MODTRAN: A Moderate Resolution Model for LOWTRAN 7. Air Force Geophysics Laboratory Technical Report AFGL-TR-89-0122 (Apr), Air Force Geophysics Laboratory, Bedford (1989).

    Google Scholar 

  3. G. M. Krekov and R. F. Rakhimov, Optical-ranging model for a continental aerosol [in Russian], Nauka, Novosibirsk (1982).

    Google Scholar 

  4. V. E. Zuev and G. M. Krekov, Optical Models of the Atmosphere [in Russian], Gidrometeoizdat, Leningrad (1986).

    Google Scholar 

  5. K. M. Firsov, T. Yu. Chesnokova, E. M. Kozodeva, and A. Z. Fazilev, Opt. Atm. Okeana, 23, No. 5, 364–370, (2010).

    Article  Google Scholar 

  6. A. I. Lyapustin, Appl. Opt., 44, No. 36, 7764–7772 (2005).

    Article  ADS  Google Scholar 

  7. S. Y. Kotchenova, E. F. Vermote, R. Matarrese, and F. J. Klemm, Appl. Opt., 45, No. 26, 6726–6774 (2006).

    Article  Google Scholar 

  8. P. S. Ricchazzi, R. Yang, C. Gautier, and D. Sowle, Bull. Am. Meteorol. Soc., 79, No. 10, 2101–2114 (1998).

    Article  ADS  Google Scholar 

  9. V. E. Zurev and V. S. Komarov, Statistical Models of Temperature and Gaseous Components in the Earth’s Atmosphere [in Russian], Gidrometeoizdat, Leningrad (1986)

    Google Scholar 

  10. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. -M. Flaud, A. Perrin, C. Camy- Peyret, V. Dana, J. -Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Watson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, J. Quant. Spectrosc. Radiat. Trans., 60, No. 5, 665–710 (1998).

    Article  ADS  Google Scholar 

  11. S. A. Clough, F. A. Kneizys, and R. W. Davies, Atm. Res., 23, Nos. 3–4, 229–241 (1989).

    Article  Google Scholar 

  12. D. C. Tobin, L. L. Strow, W. J. Lafferty, and W. B. Olson, Appl. Opt., 35, No. 24, 4724–4734 (1996).

    Article  ADS  Google Scholar 

  13. http://aeronet.gsfc.nasa.gov

  14. L. S. Ivlev and Yu. A. Dovgalyuk, Physics of Atmospheric Aerosol Systems [in Russian], Leningr. gos. un-t., St. Petersburg (1999).

    Google Scholar 

  15. K. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles [Russian translation], Mir, Moscow (1986).

    Google Scholar 

  16. V. P. Ivanov, Applied Optics of the Atmosphere in Thermal Vision [in Russian], Novoe Znanie, Kazan (2000).

    Google Scholar 

  17. G. M. Krekov and S. G. Svenigorodskii, Optical Model of the Middle Atmosphere [in Russian], Nauka, Novosibirsk (1990).

    Google Scholar 

  18. L. W. Thomason and T. Peter, Assessment of Stratospheric Aerosol Properties (ASAP), SPARC Report N. 4, WCRP-124, WMO/TD-N.1295, February 2006; http://www.atmosp.physics.utoronto.ca

  19. A. Tabazadeh, Geophys. Res. Lett., 24, No. 15, 1931–1934 (1997).

    Article  ADS  Google Scholar 

  20. K. F. Palmer and D. Williams, Appl. Opt., 14, No. 1, 208–219 (1975).

    ADS  Google Scholar 

  21. V. E. Zuev, Visible and Infrared Transparency of the Atmosphere [in Russian], Sov. Radio, Moscow (1966).

    Google Scholar 

  22. J. Li, S. W. Seemann, W. P. Menzel, and L. E. Gumley, J. Appl. Meteorol., 42, No. 8, 1072–1091 (2003).

    Article  Google Scholar 

  23. http://www.icess.ucsb.edu/modis/EMIS/html/em.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Kugeiko.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 78, No. 2, pp. 267–276, March–April, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisenko, S.A., Kugeiko, M.M. & Firago, V.A. Optical model of the atmosphere for correcting IR measurements by satellite and ground-based remote sensing systems. J Appl Spectrosc 78, 245–253 (2011). https://doi.org/10.1007/s10812-011-9454-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-011-9454-5

Keywords

Navigation