Calculation of vibrational spectra for dioxouranium monochloride monomer and dimers

Structural models were built and spectral characteristics were calculated based on ab initio calculations for the monomer and dimers of dioxouranium monochoride UO2Cl. The calculations were carried out in the effective core potential LANL2DZ approximation for the uranium atom and all-electron basis sets using DFT methods for oxygen and chlorine atoms (B3LYP/cc-pVDZ). The monomer UO2Cl was found to possess an equilibrium planar (close to T-shaped) configuration with C2v symmetry. The obtained spectral characteristics were analyzed and compared with experimental data. The adequacy of the proposed models and the qualitative agreement between calculation and experiment were demonstrated.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    V. M. Vdovenko, Chemistry of Uranium and Transuranium Elements [in Russian], Atomizdat, Moscow (1960).

    Google Scholar 

  2. 2.

    V. G. Vlasov, V. M. Zhukovskii, E. B. Tkachenko, and A. R. Beketov, Oxygen Compounds of Uranium [in Russian], Atomizdat, Moscow (1972).

    Google Scholar 

  3. 3.

    J. J. Katz and E. Rabinowitch, The Chemistry of Uranium, Part 1, McGraw-Hill Book Co., New York (1951).

    Google Scholar 

  4. 4.

    B. V. Gromov, Introduction to Uranium Chemical Technology [in Russian], Atomizdat, Moscow (1978).

    Google Scholar 

  5. 5.

    A. S. Zaimovskii, V. V. Kalashnikov, and I. S. Golovin, Atomic Reactor Fuel Rods [in Russian], Atomizdat, Moscow (1966).

    Google Scholar 

  6. 6.

    A. P. Zazhogin, A. I. Komyak, D. S. Umreiko, and S. D. Umreiko, Zh. Prikl. Spektrosk., 77, No. 2, 274–279 (2010).

    Google Scholar 

  7. 7.

    L. V. Volod’ko, A. I. Komyak, and D. S. Umreiko, Uranyl Compounds [in Russian], 1, Bel. Gos. Univ., Minsk (1981).

    Google Scholar 

  8. 8.

    D. S. Umreiko, T. A. Dik, A. P. Zazhogin, A. I. Komyak, and V. V. Syt’ko, Spectra and Structure of Uranyl Complexes [in Russian], Bel. Gos. Univ., Minsk (2004).

    Google Scholar 

  9. 9.

    http://www.msg.ameslab.gov/GAMESS/GAMESS.html

  10. 10.

    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem., 14, 1347–1363 (1993).

    Article  Google Scholar 

  11. 11.

    B. M. Bode and M. S. Gordon, J. Mol. Graph. Modell., 16, 133–138 (1998).

    Article  Google Scholar 

  12. 12.

    M. Krauss and W. J. Stevens, Annu. Rev. Phys. Chem., 35, 357–385 (1984).

    Article  ADS  Google Scholar 

  13. 13.

    L. R. Kahn, P. J. Hay, and R. D. Cowan, J. Chem. Phys., 68, 2386–2397 (1978).

    Article  ADS  Google Scholar 

  14. 14.

    T. H. Dunning, Jr., J. Chem. Phys., 90, 1007–1023 (1989).

    Article  ADS  Google Scholar 

  15. 15.

    https://bse.pnl.gov/bse/portal

  16. 16.

    D. Feller, J. Comput. Chem., 17, 1571–1586 (1996).

    Google Scholar 

  17. 17.

    K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, and T. L. Windus, J. Chem. Inf. Model., 47, 1045–1052 (2007).

    Article  Google Scholar 

  18. 18.

    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  ADS  Google Scholar 

  19. 19.

    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condes. Matter, 37, 785–789 (1988).

    ADS  Google Scholar 

  20. 20.

    W. A. de Jong, R. J. Harrison, J. A. Nichols, and D. A. Dixon, Theor. Chem. Acc., 107, 22–26 (2001).

    Google Scholar 

  21. 21.

    G. S. Groenewold, A. K. Gianotto, K. C. Cossel, M. J. Van Stopdonk, D. T. Moore, N. Polfer, J. Oomens, W. A. de Jong, and L. Visscher, J. Am. Chem. Soc., 128, 4802–4813 (2006).

    Article  Google Scholar 

  22. 22.

    R. G. Denning, J. Phys. Chem. A, 111, 4125–4143 (2007).

    Article  Google Scholar 

  23. 23.

    M. Straka, K. G. Dyall, and P. Pyykko, Theor. Chem. Acc., 106, 393–403 (2001).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. B. Shundalau.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 77, No. 4, pp. 550–555, July–August, 2010.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Umreiko, D.S., Shundalau, M.B., Zazhogin, A.P. et al. Calculation of vibrational spectra for dioxouranium monochloride monomer and dimers. J Appl Spectrosc 77, 510–515 (2010). https://doi.org/10.1007/s10812-010-9361-1

Download citation

Keywords

  • ab initio calculations
  • effective core potential
  • IR spectrum
  • dioxouranium monochloride