Skip to main content
Log in

Diffusional relaxation in ZnS after thermal doping at 800°C

  • Published:
Journal of Applied Spectroscopy Aims and scope

Photoluminescence spectra of powdered ZnS thermally doped with MnS are studied. Correlations are demonstrated between variations in the luminescence characteristics of ZnS:Mn, on one hand, and some features of radiation center formation and the diffusion of Mn in ZnS after processing, on the other. It is found that after manganese doping at a temperature (T = 800°C) lower than the phase transition temperature of ZnS, relaxation processes owing to diffusion of Mn in ZnS take place in the material over times as long as 6.103 h. It is shown that 6.103 h after doping the α-MnS phase is essentially completely dissolved in the volume of the ZnS. Diffusion of Mn in powdered ZnS is found to occur via several channels, rapid diffusion along interior boundaries and slow diffusion via interstitial space, which indicates the existence of different activation energies for diffusion of Mn depending on its localization within the ZnS lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. D. Borisenko, M. F. Bulanyi, F. F. Kodzhespirov, and B. A. Pozhelaev, Zh. Prikl. Spektrosk., 55, 452–456 (1991).

    Google Scholar 

  2. M. F. Bulanyi, B. A. Pozhelaev, T. A. Prokof’ev, I. M. Chernenko, Zh. Prikl. Spektrosk., 67, 208–210 (2000).

    Google Scholar 

  3. H. E. Gumlish, J. Lumin., 23, 73–99 (1981).

    Article  Google Scholar 

  4. R. N. Bhargava, D. Gfllgher, X. Hong, and A. Nurmikko, Phys. Rev. Lett., 72, 416–419 (1994).

    Article  ADS  Google Scholar 

  5. N. D. Borisenko, V. I. Klimenko, and B. A. Pozhelaev, Zh. Prikl. Spektrosk., 50, 475–478 (1989)..

    Google Scholar 

  6. Y. H. Lee, D. H. Kim, B. K. Ju, M. H. Song, T. S. Hahn, S. H. Choh, and M. H. Oh, J. Appl. Phys., 78, 4523–4527 (1995).

    Google Scholar 

  7. W. Busse, H. Gumlish, R. O. Tornqvist, and V. Tanninen, Phys. Status Solidi (a), 76, 553–558 (1983)..

    Article  ADS  Google Scholar 

  8. X. Lu, C. Chen, S. Husurianto, and M. D. Koretsky, J. Appl. Phys., 85, 4154–4159 (1999).

    Article  ADS  Google Scholar 

  9. P. A. Berlov, M. F. Bulanyi, and A. V. Kovalenko, FTP, 27, 1121–1124 (1993).

    Google Scholar 

  10. M. A. Il’ina, V. B. Gutan, and A. M. Gurvich, Zh. Prikl. Spektrosk., 14, 838–844 (1971).

    Google Scholar 

  11. S. V. Svechnikov, L. V. Zav’yalova, N. N. Roshchina, V. E. Rodionov, V. S. Khomchenko, L. I. Berezhinskii,

  12. I. V. Prokopenko, P. M. Litvin, O. S. Litvin, Yu. V. Kolmzarov, and Yu. A. Tsyrkunov, FTP, 34, 1178–1182 (2000).

    Google Scholar 

  13. V. A. Korotkov, L. I. Bruk, R. L. Sobolevskaya, and K. D. Sushkevich, Zh. Prikl. Spektrosk., 62, 225–228 (2002).

    Google Scholar 

  14. N. K. Morozova and V. A. Kuznetsov, Zinc Sulfide. Production and Optical Properties [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  15. O. N. Kazankin, L. A. Markovskii, I. A. Mironov, F. M. Pekerman, and L. N. Petoshina, Inorganic Luminophores [in Russian], Khimiya, Leningrad (1975).

    Google Scholar 

  16. N. D. Borisenko and B. A. Pozhelaev, Zh. Prikl. Spektrosk., 53, 1020–1022 (1990).

    Google Scholar 

  17. M. F. Bulanyi, A. A. Gorban’, A. V. Kovalenko, B. A. Pozhelaev, and T. A. Prokof’ev, Izv. Vuzov. Fizika, 45, No. 12, 66–70 (2002).

    Google Scholar 

  18. W. Busse, H. Gumlich, A Geoffroy, and R. Parrot, Phys. Status Solidi (b), 93, 591–596 (1979).

    Google Scholar 

  19. A. M. Gurvich, Introduction to the Physical Chemistry of Crystalline Phosphors [in Russian], Vyssh. shkola, Moscow (1982).

    Google Scholar 

  20. É. D. Pol’skikh, A study of zinc sulfide luminophores activated by oxygen, Candidate’s dissertation in Chem. Sciences, Moscow (1974).

  21. M. V. Fock, Tr. FIAN, 59, 3–24 (1972).

    Google Scholar 

  22. V. E. Gmurman, Probability Theory and Mathematical Statistics [in Russian], Vyssh. shkola, Moscow (2003).

    Google Scholar 

  23. M. Aven and D. S. Prener, Physics and Chemistry of A2B6 Compounds [Russian translation], S. A. Medvedev, ed., Mir, Moscow (1970).

  24. V. P. Gladkov, V. A. Kashcheev, V. I. Petrov, and I. M. Rumyantsev, FTT, 74, 1–4 (2004).

    Google Scholar 

  25. A. V. Golubkov, V. A. Didik, V. V. Kaminskii, E. A. Skoryatina, V. P. Usacheva, and N. V. Sharenkova, FTT, 47, 1192–1194 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Yu. Bacherikov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 77, No. 1, pp. 104–112, January–February, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacherikov, Y.Y., Optasyuk, S.V. Diffusional relaxation in ZnS after thermal doping at 800°C. J Appl Spectrosc 77, 95–103 (2010). https://doi.org/10.1007/s10812-010-9298-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-010-9298-4

Keywords

Navigation