Journal of Applied Spectroscopy

, Volume 77, Issue 1, pp 86–94 | Cite as

Spectroscopic characterization of indian standard sand

Article

The characterization of Indian standard sand (IS650:1991 as per B.I.S. approval) was performed by X-ray diffraction, IR and Raman spectroscopy, and nuclear magnetic resonance techniques. The principal reflections occurring at the d-spacings of 4.2408, 3.3440, and 1.8292 Å confirm the presence of α-quartz crystalline structure in the sample. The calculated unit cell parameters are: a = 4.9294 Å, c = 5.4093 Å, and V = 113.832 Å3. Mid-IR spectrum shows the characteristic doublet for α-quartz at 797 and 778 cm–1. The Al/Al+Si ratio has been calculated from the position of the absorption band at 1100 cm–1. Raman spectrum of the sample has two strong peaks at 203 cm–1 and at 462 cm–1 for A1 vibrational mode characteristic of α-quartz. Two bands at 1410 and 1930 nm in near-IR spectrum indicate the presence of both molecular water and an OH group. A broad double band centered near 1210 nm and a weak band at 1050 nm attest the presence of Fe2+ and Fe3+ respectively in the sample. The signal near g ∼ 4 is characteristic of isolated Fe3+ ions in the distorted octahedral or tetrahedral crystalline field. 29Si NMR spectrum shows a strong signal at –107 ppm corresponding to quartz.

Keywords

sand X-ray diffraction infrared and Raman spectra 29Si nuclear magnetic resonance spectroscopic techniques 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. A. Deer, R. A. Howie, J. Zussman, An Introduction to the Rock-Forming Minerals, The English Language Book Society and Longman, London (1978)Google Scholar
  2. 2.
    J. M. Hunt, M. P. Wishered, L. C. Bonham, Anal. Chem., 22, 1478–1497 (1950).CrossRefGoogle Scholar
  3. 3.
    V. M. Tuddenham, R. J. P. Lyon, Anal. Chem., 32, 1630–1634 (1960).CrossRefGoogle Scholar
  4. 4.
    J. Hlavay, K. Jonas, S. Elek, J. Inczedy, Clay Clay Miner., 26, 139–143 (1978).CrossRefGoogle Scholar
  5. 5.
    Y. Liang, C. R. Miranda, S. Scandolo, J. Chem. Phys., 125, 194524–194525 (2006).CrossRefADSGoogle Scholar
  6. 6.
    Powder Diffraction Files Search Manual Minerals 2003 Joint Committee on powder diffraction standards, USAGoogle Scholar
  7. 7.
    H. H. W. Moenke, Silica, the three-dimensional silicates, borosilicates and beryllium silicates. The infrared spectra of minerals, Ed. V. C. Farmer, Mineralogical Society, London, 1974.Google Scholar
  8. 8.
    D. G. Taylor, C. M. Nenadic, J. V. Crable, Am. Ind. Hyg. Assoc. J., 31, 100–108 (1970).Google Scholar
  9. 9.
    J. F. Scott, P. S. Porto, Phys. Rev., 161, 903–910 (1967).CrossRefADSGoogle Scholar
  10. 10.
    P. S. Nayak, B. K. Singh, Bull. Mater. Sci., 30, 235Ö238 (2007).Google Scholar
  11. 11.
    H. M. V. Marel, H. Bentelspacher, Atlas of infrared spectroscopy of clay minerals and their admixtures, Elsevier, New York (1976).Google Scholar
  12. 12.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination compounds, Wiley Interscience, New York (1986).Google Scholar
  13. 13.
    F. Edlsass, D. Oliver, Clay Miner., 13, 299–308 (1978).CrossRefGoogle Scholar
  14. 14.
    Bimalendu Narayan Roy, J. Am. Ceram. Soc., 70, 183–192 (1987).Google Scholar
  15. 15.
    H. Nishido, K. Ninagawa, M. Sakamoto, A. Gucsik, T. Okumura, S. Toyoda, Sz. Bérczi, Sz. Nagy, Lunar Planet. Sci., XXXVII (2006) 1651.pdfGoogle Scholar
  16. 16.
    Z. C. Ling, Alian Wang, Bradley L. Jolliff, Chunlai Li, Jianjun Liu, Wei Bian, Xin Ren, Lingli Mu, Yan Su, meteorites.wustl.edu/abstracts/lpsc40/a_l09l02.pdfGoogle Scholar
  17. 17.
    P. F. McMillan, G. H. Wolf, P. Lambert, Phys. Chem. Miner., 19, 71–79 (1992).CrossRefADSGoogle Scholar
  18. 18.
    B. D. Saksena, H. Narain, Nature, 164, 583–584 (1949).CrossRefADSGoogle Scholar
  19. 19.
    P. F. McMillan, Annu. Rev. Earth Planet. Sci., 17, 255–283 (1989).CrossRefADSGoogle Scholar
  20. 20.
    A. Wang, J. Han, L. Guo, J. Yu, P. Zeng, Appl. Spectrosc., 48, 959–968 (1994).CrossRefADSGoogle Scholar
  21. 21.
    L. Burgio and R. J. H. Clark, Spectrochim. Acta, A57, 1491–1521 (2001).Google Scholar
  22. 22.
    M. Ostrooumov, E. Fritsch, B. Lasnier, S. Lefrant, Eur. J. Miner., 11, 899–908 (1999).Google Scholar
  23. 23.
    G. R. Hunt, J. W. Salisbury, C. J. Lenhoff, Mod. Geol., 3, 1–14 (1971).Google Scholar
  24. 24.
    G. R. Hunt, R. P. Ashley, Econ. Geol., 74, 1613–1629 (1979)CrossRefGoogle Scholar
  25. 25.
    G. R. Rossman, Am. Miner., 61, 398–404 (1976).Google Scholar
  26. 26.
    H. Scholze, Glass Ind., 47, 546–551, 622–628 (1966).Google Scholar
  27. 27.
    E. Stolper, Contrib. Miner. Petrol., 81, 1–17 (1982).CrossRefADSGoogle Scholar
  28. 28.
    R. N. Clark, T. L. Roush, J. Geophys. Res., 89, 6329–6340 (1984).CrossRefADSGoogle Scholar
  29. 29.
    S. J. Gaffey, Geology, 13, 270–273 (1985).CrossRefADSGoogle Scholar
  30. 30.
    S. Nakagaki, A. D. F. Castro Kelly, G. S. Machado, M. Halma, S. M Drechsel, F. Wypych, J. Braz. Chem. Soc., 17, 1672–1678 (2006).CrossRefGoogle Scholar
  31. 31.
    J. R. Johnson, F. Hörz, J. Geophys. Res., 108(E11), 5120, doi:10.1029/2003JE002127 (2003).CrossRefADSGoogle Scholar
  32. 32.
    D. M. Sherman, Am. Miner., 70, 1262–1269 (1985).ADSGoogle Scholar
  33. 33.
    J. J. Reece, S. A. T. Redfern, M. D. Welch, C. M. B. Henderson, C. A. McCammon, Phys. Chem. Miner., 29, 562–570 (2002).CrossRefADSGoogle Scholar
  34. 34.
    T. Grygar, J. Dedeck, P. P. Kruiver, M. J. Dekkers, P. Bezdicka, O. Schneeweiss, Catena, 53, 115–132 (2003).CrossRefGoogle Scholar
  35. 35.
    M. N. Taran, M. Koch-Muller, K. Langer, Phys. Chem. Miner., 32, 175–188 (2005).CrossRefADSGoogle Scholar
  36. 36.
    S. Gunasekaran, G. Anbalagan, Spectrochim. Acta, 69, 383–390 (2008).CrossRefGoogle Scholar
  37. 37.
    H. H. Tippins, Phys. Rev., 1B, 126–135 (1970).ADSGoogle Scholar
  38. 38.
    D. M. Sherman, Phys. Chem. Miner., 12, 161–175 (1985).CrossRefADSGoogle Scholar
  39. 39.
    T. Castner, G. S. Newell, W. C. Holton, C. P. Slichter, J. Chem. Phys., 32, 668–673 (1960).CrossRefADSGoogle Scholar
  40. 40.
    S. W. Karickhoff, G. W. Bailey, Clay Miner., 21, 59–70 (1973).CrossRefGoogle Scholar
  41. 41.
    J. W. H. Schreurs, J. Chem. Phys., 69, 2151–2156 (1978).CrossRefADSGoogle Scholar
  42. 42.
    E. Lippmaa, M. Magi, A. Samoson, G. Engelhardt, A. R. Grimmer, J. Am. Chem. Soc., 102, 4889–4893 (1980.)CrossRefGoogle Scholar
  43. 43.
    E. Lippmaa, M. Magi, A. Samoson, M. Tarmak, G. Engelhardt, J. Am. Chem. Soc., 103, 4992–4996 (1981).CrossRefGoogle Scholar
  44. 44.
    K. A. Smith, R. J. Kirkpatrick, E. Oldfield, D. M. Henderson, Am. Miner., 68, 1206–1215 (1983).Google Scholar
  45. 45.
    M. Magi, E. Lippmaa, A. Samoson, G. Engelhardt, A. R. Grimmer, J. Phys. Chem., 88, 1518–1522 (1984).CrossRefGoogle Scholar
  46. 46.
    G. Engelhardt, M. Nofz, K. Forkel, F. G. Wihsmann, M. Magi, A. Samoson, E. Lippmaa, Phys. Chem. Glasses, 26, 157–165 (1985).Google Scholar
  47. 47.
    Y. Le. Page, G. Donnay, Acta Crystallogr., 32B, 2456–2467 (1976).Google Scholar
  48. 48.
    R. A. Weeks, A. Chatelain, J. L. Kolopus, D. Kline, J. G. Castle, Science, 167, 704–707 (1970).CrossRefADSGoogle Scholar
  49. 49.
    L. E. Drain, Proc. Phys. Soc., 80, 1380–1382 (1962).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • G. Anbalagan
    • 1
  • A. R. Prabakaran
    • 2
  • S. Gunasekaran
    • 2
  1. 1.Department of PhysicsPresidency CollegeChennai-600005India
  2. 2.Department of PhysicsPachaiyappa’s CollegeChennai-600030India

Personalised recommendations