Skip to main content
Log in

Calculation of the structure and vibrational states for anionic forms of Co-, Ni-, and Cu-porphines

  • Published:
Journal of Applied Spectroscopy Aims and scope

The structure and vibrations of neutral porphine metal complexes (Me-P, Me = Co, Ni, Cu) and their d-anionic forms with an additional electron localized in vacant \( d_x^2 -_y^2 - \) and \( d_z^2 \)-orbitals are compared based on calculations by a DFT method. It is shown that such electron population causes a significant increase of the electronic charge on the macrocycle rather than on the Me atom and is accompanied by a considerable redistribution of π- and σ-electron densities (ρπ ρσ). A predominant gain of ρπ (0.49e) is found for the monoanion of Co-P (Co-P, \( d_z^2 \)-monoanion); of ρσ (0.6e), for Ni-P( \( d_x^2 -_y^2 - \)monoanion). These features are reflected in both the structure of the anions and the behavior of their vibrational frequencies. The greatest frequency shifts among IR active modes when populating the \( d_z^2 \)- and \( d_x^2 -_y^2 - \)orbitals occur for out-of-plane vibrations (>30 cm–1) and in-plane modes (34–46 cm–1) involving MeN- and CαCm-bonds, respectively. Abnormally large frequency lowering is found for B1g-type modes (active in the resonance Raman spectrum) involving mainly CαCm-, CβCβ-, CαCβ-, and MeN-bonds. This is related to a change in the dπ-eg interaction strength during such vibrations that contributes to a decrease in the corresponding force constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. Groot, N. P. Pawlowicz, L. J. G. W. van Wilderen, J. Breton, I. H. M. van Stokkum, and R. van Grondell, Proc. Natl. Acad. Sci. USA, 102, 13087–13092 (2005).

    Article  ADS  Google Scholar 

  2. A. G. Yakovlev, M. R. Jones, J. A. Potter, P. K. Fyfe, L. G. Vasilieva, A. Y. Shkuropatov, and V. A. Shuvalov, Chem. Phys., 1–3, 297–307 (2005).

    Article  ADS  Google Scholar 

  3. N. V. Ivashin and S. Larsson, J. Phys. Chem. B, 112, 14019–12133 (2008).

    Article  Google Scholar 

  4. S. N. Terekhov and I. F. Gurinovich, Teor. Éksp. Khim., 18, 503–507 (1982).

    Google Scholar 

  5. V. G. Maslov, T. P. Prokof’eva, and A. N. Sidorov, Dokl. Akad. Nauk SSSR, 266, 1414–1417 (1982).

    Google Scholar 

  6. N. V. Ivashin and I. F. Gurinovich, Zh. Prikl. Spektrosk., 41, No. 6, 956–962 (1984).

    Google Scholar 

  7. S. N. Terekhov, N. M. Ksenofontova, and I. F. Gurinovich, Zh. Prikl. Spektrosk., 53, No. 4, 576–584 (1990).

    Google Scholar 

  8. N. V. Ivashin and I. V. Filatov, Teor. Éksp. Khim., 26, 573–579 (1990).

    Google Scholar 

  9. N. V. Ivashin, Teor. Éksp. Khim., 26, 579–585 (1999).

    Google Scholar 

  10. A. A. Jarzecki, P. M. Kozlowsky, P. Pulay, B-H. Ye, and X.-Y. Li, Spectrochim. Acta, Part A, 53, 1195–1209 (1997).

    Article  Google Scholar 

  11. K. A. Nguyen, P. N. Day, and R. J. Pachter, Chem. Phys., 110, 9135–9144 (1999).

    ADS  Google Scholar 

  12. D.-M. Chen, X. Liu, T.-J. He, and F.-C. Liu, Chem. Phys. Lett., 361, 106–114 (2002).

    Article  ADS  Google Scholar 

  13. N. V. Ivashin and O. P. Parkhots, Opt. Spektrosk., 97, 357–368 (2004).

    Article  ADS  Google Scholar 

  14. N. V. Ivashin and O. P. Parkhots, Opt. Spektrosk., 101, 228–238 (2006).

    Google Scholar 

  15. N. V. Ivashin and O. P. Parkhots, Opt. Spektrosk., 106, 237–246 (2009).

    Google Scholar 

  16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision B.05, Gaussian, Inc., Wallingford CT (2004).

    Google Scholar 

  17. P. Flükiger, H. P. Lüthi, S. Portmann, and J. Weber, Molekel 4.3. Swiss Center for Scientific Computing, Manno, Switzerland (2000).

  18. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  ADS  Google Scholar 

  19. A. D. Becke, Phys. Rev. A, Gen. Phys., 38, 3098–3100 (1988).

    Article  ADS  Google Scholar 

  20. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 37, 785–789 (1988).

    ADS  Google Scholar 

  21. A. Schaefer, H. Horn, and R. Ahlrichs, J. Chem. Phys., 97, 2571–2577 (1992).

    Article  ADS  Google Scholar 

  22. L. K. Stoll, M. Z. Zgierski, and P. M. Kozlowski, J. Phys. Chem., 106, 170–175 (2002).

    Google Scholar 

  23. P. M. Kozlowski, A. A. Jarzecki, and P. J. Pulay, J. Phys. Chem., 100, 7007–7013 (1996).

    Article  Google Scholar 

  24. M. Gruden-Pavlovic, S. Grubisic, M. Zlatar, and S. R. Niketic, Int. J. Mol. Sci., 8, 810–829 (2007).

    Article  Google Scholar 

  25. R. D. Kross, V. A. Fassel, and M. Margoshes, J. Am. Chem. Soc., 78, 1332–1335 (1956).

    Article  Google Scholar 

  26. J. W. Linnett and P. J. Wheatley, Nature, 161, 971–972 (1948).

    Article  MATH  ADS  Google Scholar 

  27. S. Choi, T. G. Spiro, K. C. Langry, K. M. Smith, D. L. Budd, and G. N. La Mar, J. Am. Chem. Soc., 104, 4345–4351 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Ivashin.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 77, No. 1, pp. 34–44, January–February, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivashin, N.V. Calculation of the structure and vibrational states for anionic forms of Co-, Ni-, and Cu-porphines. J Appl Spectrosc 77, 28–37 (2010). https://doi.org/10.1007/s10812-010-9289-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-010-9289-5

Keywords

Navigation