Skip to main content
Log in

Polarization switching in single-mode injection semiconductor laser

  • Published:
Journal of Applied Spectroscopy Aims and scope

Based on a previously developed polarization component method, a phenomenological model is constructed for the generation of polarized radiation in single-mode semiconductor lasers and applied to polarization switching. This model gives a good description of the experimentally observed features of the polarization process. At the same time, a number of effects related to the polarization switching rate, hysteresis characteristics, and polarization switching during optical injection are interpreted anew in terms of the formation dynamics of the laser radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. P. G. Eliseev, B. N. Sverdlov, and N. Shokhudzhaev, Kvant. Élektron., 11, 1665–1667 (1984).

    Google Scholar 

  2. Y. C. Chen and J. M. Liu, Appl. Phys. Lett., 6, 16–21 (1985).

    Article  ADS  Google Scholar 

  3. Y. C. Chen and J. M. Liu, Opt. Quantum Electron., 19, S93–S102 (1987).

    Article  Google Scholar 

  4. P. G. Eliseev, M. A. Man’ko, and V. P. Strakhov, Zh. Tekh. Fiz., 38, 100–102 (1968).

    Google Scholar 

  5. G. Ropars, A. Le Floch, G. Jezequel, R. Le Naour, Y. C. Chen, and J. M. Liu, IEEE J. Quantum Electron., 23, 1027–1032 (1987).

    Article  ADS  Google Scholar 

  6. M. Okada and K. Nishio, IEEE J. Quantum Electron., 32, 1767–1776 (1996).

    Article  ADS  Google Scholar 

  7. H. Kawaguchi, IEEE J. Sel. Topics Quantum Electron., 3, 1254–1270 (1997).

    Article  Google Scholar 

  8. C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. von Lehmen, L. T. Florez, and N. G. Stoffel, IEEE J. Quantum Electron., 27, 1402–1409 (1991).

    Article  ADS  Google Scholar 

  9. K. D. Choquette, R. P. Schneider, K. L. Lear, and R. E. Leibenguth, IEEE J. Sel. Topics Quantum Electron., 1, 661–666 (1995).

    Article  Google Scholar 

  10. K. Panajotov, B. Ryvkin, J. Danckaert, M. Peters, H. Thienport, and I. Veretennicoff, IEEE Photon. Technol. Lett., 10, 6–8 (1998).

    Article  ADS  Google Scholar 

  11. M. San Miguel, Q. Feng, and J. V. Moloney, Phys. Rev. A, 52, 1728–1739 (1995).

    Article  ADS  Google Scholar 

  12. J. Martin-Regalado, F. Prati, M. San Miguel, and N. B. Abraham, IEEE J. Quantum Electron., 33, 765–783 (1997).

    Article  ADS  Google Scholar 

  13. M. P. van Exter, R. F. M. Hendriks, and J. P. Woerdman, Phys. Rev. A, 57, 2080–2090 (1998).

    Article  ADS  Google Scholar 

  14. D. Burak, J. V. Moloney, and R. Binder, Phys. Rev. A, 61, 053809–53830 (2000).

    Article  ADS  Google Scholar 

  15. M. Streiff, A. Witzig, M. Pfeifer, P. Royo, and W. Fichtner, IEEE J. Sel. Topics Quantum Electron., 9, 879–891 (2003).

    Article  Google Scholar 

  16. S. Riyopoulos and D. Dialetis, IEEE J. Sel. Topics Quantum Electron., 9, 892–904 (2003).

    Article  Google Scholar 

  17. P. Debernardi, J. M. Ostermann, M. Sondermann, T. Ackemann, G. P. Bava, and R. Michalzik, IEEE J. Sel. Topics Quantum Electron., 13, 1340–1348 (2007).

    Article  Google Scholar 

  18. A. Valle, M. Sciamanna, and K. Panajotov, IEEE J. Quantum Electron., 44, 136–143 (2008).

    Article  ADS  Google Scholar 

  19. W. L. Zhang, W. Pan, B. Luo, M. Y. Wang, and X. H. Zuo, IEEE J. Sel. Topics Quantum Electron., 14, 889–894 (2008).

    Article  Google Scholar 

  20. T. Ackemann and M. Sondermann, Appl. Phys. Lett., 78, 3574–3576 (2001).

    Article  ADS  Google Scholar 

  21. L. I. Burov, A. P. Klishchenko, and A. P. Listopad, Zh. Prikl. Spektrosk., 64, 595–602 (1997).

    Google Scholar 

  22. L. I. Burov and I. N. Baraksa, Zh. Prikl. Spektrosk., 68, 67–70 (2001).

    Google Scholar 

  23. L. I. Burov, I. N. Baraksa, and A. S. Gorbatsevich, Zh. Prikl. Spektrosk., 74, 346–350 (2007).

    Google Scholar 

  24. D. Sun, E. Towe, P. H. Ostdiek, J. W. Grantham, and G. J. Vansuch, IEEE J. Sel. Topics Quantum Electron., 1, 674–680 (1995).

    Article  Google Scholar 

  25. V. K. Kononenko, I. S. Manak, S. V. Nalivko, V. A. Shevtsov, and D. S. Shulyev, Zh. Prikl. Spektrosk., 64, 221–227 (1997).

    Google Scholar 

  26. R. Maciejko, A. Golebiowski, A. Champagne, and J. M. Glinski, IEEE J. Quantum Electron., 29, 51–61 (1993).

    Article  ADS  Google Scholar 

  27. J. Paul, C. Masoller, P. Mandel, Y. Hong, P. S. Spencer, and K. A. Shore, Phys. Rev. A, 77, 043803 (2008).

    Article  ADS  Google Scholar 

  28. Y. Hong, K. A. Shore, A. Larsson, M. Ghisoni, and J. Halonen, IEE Proc. Optoelectron., 148, 31–34 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Burov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 5, pp. 717–724, September–October, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jadan, M., Burov, L.I., Gorbatsevich, A.S. et al. Polarization switching in single-mode injection semiconductor laser. J Appl Spectrosc 76, 678–684 (2009). https://doi.org/10.1007/s10812-009-9252-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-009-9252-5

Keywords

Navigation