Skip to main content
Log in

Intracavity Raman laser generating a third stokes component at 1.5 μm

  • Published:
Journal of Applied Spectroscopy Aims and scope

The lasing properties of an intracavity Nd:KGW Raman laser which converts the multimode radiation of an Nd:KGW laser operating on the 4 F 3/24 I 11/2 transition into the third Stokes component at a wavelength of 1.5 μm are studied. The energy in the third Stokes component is found to increase essentially linearly with the electrical energy delivered to the flashlamp. Lasing at the third Stokes component begins in the central portion of the Nd:KGW crystal and then propagates to its boundaries. Reducing the geometric aperture of the multimode pump beam in the Raman crystal lowers the divergence of the Stokes emission. For a source pump energy of 6 J, the intracavity Raman laser emits 14.7 mJ pulses of duration 3–4 nsec which are safe to the eyes. The divergence of the Raman laser beam at a level of 86% of the total energy is ≈ 9 mrad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. T. Murray, R. C. Powell, N. Peyghambarian, D. Smith, W. Austin, and R. A. Stolzenberger, Opt. Lett., 20, 1017–1019 (1995).

    Article  ADS  Google Scholar 

  2. D. Sakaizawa, Ch. Nagasawa, T. Nagai, M. Abo, Y. Shibata, and M. Nakazato, Japan. J. Appl. Phys., 47, 1612–1614 (2008).

    Article  ADS  Google Scholar 

  3. N. S. Ustimenko and E. M. Zabotin, PTÉ, No. 2, 112–113 (2005).

  4. N. S. Ustimenko and A. V. Gulin, Kvant. Élektron., 32, 229–231 (2002).

    Article  Google Scholar 

  5. Y. F. Chen, Opt. Lett., 29, 2172–2174 (2004).

    Article  ADS  Google Scholar 

  6. Y. F. Chen, Opt. Lett., 29, 2632–2634 (2004).

    Article  ADS  Google Scholar 

  7. P. G. Zverev, T. T. Basiev, and A. M. Prokhorov, Opt. Mater., 11, 335–352 (1999).

    Article  Google Scholar 

  8. N. Tkei, S. Suzuki, and F. Kannari, Appl. Phys. B, 74, 521–527 (2002).

    Article  ADS  Google Scholar 

  9. V. A. Lisinetskii, A. S. Grabtchikov, I. A. Khodasevich, H. J. Eichler, and V. A. Orlovich, Opt. Commun., 272, 509–513 (2007).

    Article  ADS  Google Scholar 

  10. A. A. Kaminskii, S. É. Sarkisov, A. A. Pavlyuk, and V. V. Lyubchenko, Neorg. Mater., 16, 720–728 (1980).

    Google Scholar 

  11. A. M. Ivanyuk, M. A. Ter-Pogosyan, P. A. Shahkverdov, V. D. Belyaev, and N. P. Tikhonova, Opt. Spektr., 59, 950–954 (1985).

    Google Scholar 

  12. V. A. Berenberg, S. N. Karpukhin, and I. V. Mochalov, Kvant. Élektron., 14, 1849–1850 (1987).

    Google Scholar 

  13. I. V. Mochalov, Opt. Eng., 36, 1660–1669 (1997).

    Article  ADS  Google Scholar 

  14. V. I. Dashkevich, A. I. Vodchits, V. A. Orlovich, N. S. Kazak, V. K. Pavlenko, V. I. Pokryshkin, I. P. Petrovich, and V. V. Rukhovets, Zh. Prikl. Spektrosk., 73(4), 535–543 (2006).

    Google Scholar 

  15. Ya. I. Khanin, Laser Dynamics [in Russian], Sov. Radio, Moscow (1975).

    Google Scholar 

  16. N. Hodgson and H. Weber, Optical Resonator: Fundamentals, Advanced, Concepts and Application, London, Springer-Verlag (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Dashkevich.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 5, pp. 725–732, September–October, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dashkevich, V.I., Orlovich, V.A. & Shkadarevich, A.P. Intracavity Raman laser generating a third stokes component at 1.5 μm. J Appl Spectrosc 76, 685–691 (2009). https://doi.org/10.1007/s10812-009-9249-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-009-9249-0

Keywords

Navigation