Quantum chemical analysis of vibrational spectra of methylphenylcarbamate

We present results of ab initio and DFT calculations of the structure, potential function of internal rotation of the methyl group, and vibrational frequencies and intensities in IR and Raman spectra of methylphenylcarbamate. The calculations were carried out in different basis sets in the HF, MP2, and DFT/B3LYP approximations with partial force field scaling. The influence of the phenyl substituent on structural and spectral characteristics of the urethane group has been analyzed. Calculated characteristics of vibrational spectra show satisfactory agreement with experimental values.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. M. Buist, Developments in Polyurethane, Applied Science Publishers, London (1978).

    Google Scholar 

  2. 2.

    M. A. Ksenofontov, D. S. Umreiko, L. E. Ostrovskaya, and A. S. Khatenko, Spectral Analysis of Dihydroxybenzenes as the Principal Structural Unit of Gas-Filled Polymers [in Russian], Izd. Tsentr Bel. Gos. Univ., Minsk (2005).

    Google Scholar 

  3. 3.

    M. B. Shundalov, G. A. Pitsevich, M. A. Ksenofontov, and D. S. Umreiko, Zh. Prikl. Spektrosk., 76, No. 3, 349–357 (2009).

    Google Scholar 

  4. 4.


  5. 5.

    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem., 14, 1347–1363 (1993).

    Article  Google Scholar 

  6. 6.


  7. 7.

    B. M. Bode and M. S. Gordon, J. Mol. Graph. Model., 16, 133–138 (1998).

    Article  Google Scholar 

  8. 8.

    T. H. Dunning, Jr., J. Chem. Phys., 90, 1007–1023 (1989).

    Article  ADS  Google Scholar 

  9. 9.

    C. Möller and M. S. Plesset, Phys. Rev., 46, 618–622 (1934).

    Article  ADS  Google Scholar 

  10. 10.

    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  ADS  Google Scholar 

  11. 11.

    G. Keresztury, F. Billes, M. Kubinyi, and T. Sundius, J. Phys. Chem. A, 102, 1371–1380 (1998).

    Article  Google Scholar 

  12. 12.

    V. Szalay, A. G. Csaszar, and M. L. Senent, J. Chem. Phys., 117, 6489–6492 (2002).

    Article  ADS  Google Scholar 

  13. 13.

    D. Xu and A. L. Cooksy, J. Mol. Struct. (Theochem.), 815, 119–125 (2007).

    Article  Google Scholar 

  14. 14.

    http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology, date of access)

  15. 15.

    M. A. El’yashevich, Atomic and Molecular Spectroscopy [in Russian], URSS, Moscow (2001).

    Google Scholar 

  16. 16.

    V. V. Sivchik and K. M. Grushetskii, Zh. Prikl. Spektrosk., 19, No. 2, 317–319 (1973).

    Google Scholar 

  17. 17.

    H. D. Bist, J. C. D. Brand, and D. R. Williams, J. Mol. Spectrosc., 24, 402–412 (1967).

    Article  ADS  Google Scholar 

  18. 18.

    K. Nakanishi, Infrared Absorption Spectroscopy. Practical, Holden-Day, San Francisco (1962).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to M. B. Shundalov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 4, pp. 485–492, July–August, 2009.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shundalov, M.B., Pitsevich, G.A., Ksenofontov, M.A. et al. Quantum chemical analysis of vibrational spectra of methylphenylcarbamate. J Appl Spectrosc 76, 457–463 (2009). https://doi.org/10.1007/s10812-009-9237-4

Download citation

Key words

  • ab initio and DFT calculations
  • torsional potential
  • infrared spectra
  • Raman spectra
  • methylphenylcarbamate