Quantum-chemical calculations of the structure, vibrational spectra, and torsional and inversion potentials of methylcarbamate

We present results of ab initio and DFT calculations of the structure, potential functions of the methyl group internal rotation and the amino group inversion, and vibrational frequencies and intensities in IR and Raman spectra of methylcarbamate. The calculations were carried out using different basis sets in the HF, MP2, and DFT/B3LYP approximations. The influence of both the basis set size and the allowance for electronic correlation on peculiarities of the structure of the amino group in methylcarbamate has been analyzed. It is shown that the B3LYP/6-311++G(2d, p) and B3LYP/cc-pVDZ calculations reproduce highly accurately experimental geometric parameters of methylcarbamate. Parameters of torsional and inversion potentials and characteristics of vibrational spectra calculated in different approximations show satisfactory agreement with experimental values.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. M. Bunette, ed., Composite Materials Based on Polyurethanes [Russian translation], Nauka, Moscow (1982).

    Google Scholar 

  2. 2.

    M. A. Ksenofontov, D. S. Umreiko, L. E. Ostrovskaya, and A. S. Khatenko, Spectral Analysis of Dihydroxybenzenes as the Basic Structural Unit of Gas-Filled Polymers [in Russian], Izdat. Tsentr Bel. Gos. Univ., Minsk (2005).

    Google Scholar 

  3. 3.

    V. L. Furer, J. Mol. Struct., 520, 117–123 (2000).

    Article  ADS  Google Scholar 

  4. 4.

    http://www.msg.ameslab.gov/GAMESS/GAMESS.html

  5. 5.

    http://classic.chem.msu.su/gran/gamess/index.html

  6. 6.

    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem., 14, 1347–1363 (1993).

    Article  Google Scholar 

  7. 7.

    B. M. Bode and M. S. Gordon, J. Mol. Graphics Modell., 16, 133–138 (1998).

    Article  Google Scholar 

  8. 8.

    T. H. Dunning, Jr., J. Chem. Phys., 90, 1007–1023 (1989).

    Article  ADS  Google Scholar 

  9. 9.

    C. Möller and M. S. Plesset, Phys. Rev., 46, 618–622 (1934).

    Article  ADS  Google Scholar 

  10. 10.

    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  ADS  Google Scholar 

  11. 11.

    E. Hirota, R. Sugisaki, C. J. Nielsen, and G. O. Sorensen, J. Mol. Spectrosc., 49, 251–267 (1974).

    Article  ADS  Google Scholar 

  12. 12.

    M. Kitano and K. Kuchitsu, Bull. Chem. Soc. Jpn., 46, 3048–3051 (1973).

    Article  Google Scholar 

  13. 13.

    J. Demaison, A. G. Czászár, I. Kleiner, and H. M?llendal, J. Phys. Chem. A, 111, 2574–2586 (2007).

    Article  Google Scholar 

  14. 14.

    R. A. Kydd and A. Rauk, J. Mol. Struct., 77, 227–238 (1981).

    Article  ADS  Google Scholar 

  15. 15.

    V. Ilyushin, E. Alekseev, J. Demaison, and I. Kleiner, J. Mol. Spectrosc., 240, 127–132 (2006).

    Article  ADS  Google Scholar 

  16. 16.

    B. Bakri, J. Demaison, I. Kleiner, L. Margules, H. Møllendal, D. Petitprez, G. Wlodarczak, J. Mol. Spectrosc., 215, 312–316 (2002).

    Article  ADS  Google Scholar 

  17. 17.

    V. Szalay, A. G. Csaszar, and M. L. Senent, J. Chem. Phys., 117, 6489–6492 (2002).

    Article  ADS  Google Scholar 

  18. 18.

    J. C. Carter and J. E. Devia, Spectrochim. Acta, Part A, 29, 623–632 (1973).

    Article  Google Scholar 

  19. 19.

    http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology, date of access)

  20. 20.

    K. Yagi, K. Hirao, T. Taketsugu, M. W. Schmidt, and M. S. Gordon, J. Chem. Phys., 121, 1383–1389 (2004).

    Article  ADS  Google Scholar 

  21. 21.

    G. M. Chaban, J. O. Jung, and R. B. Gerber, J. Chem. Phys., 111, 1823–1829 (1999).

    Article  ADS  Google Scholar 

  22. 22.

    M. A. El’yashevich, Atomic and Molecular Spectroscopy [in Russian], URSS, Moscow (2001).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. B. Shundalov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 3, pp. 349–357, May–June, 2009.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shundalov, M.B., Pitsevich, G.A., Ksenofontov, M.A. et al. Quantum-chemical calculations of the structure, vibrational spectra, and torsional and inversion potentials of methylcarbamate. J Appl Spectrosc 76, 325–333 (2009). https://doi.org/10.1007/s10812-009-9191-1

Download citation

Keywords

  • ab initio and DFT calculations
  • torsion potential
  • inversion potential
  • IR and Raman spectra
  • methylcarbamate