Skip to main content

Advertisement

Log in

Emission properties of thin films of electroactive doped polymers

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

We have studied the effect of the intensity of the exciting radiation and the temperature on the emission properties of two kinds of thin-film samples based on blends of two types of organic electroactive materials: polyfluorene + iridium triphenylpyridinate and polyepoxypropylcarbazole + zero-th order PAMAM dendrimer with eosin. We have shown that an increase in the excitation intensity leads to an increase in the intensity of the luminescence of the polymer matrices and the iridium complex up to a power density of 300 kW/cm2, and the emission of the dendrimer is rapidly saturated and does not return to the initial value when the excitation level decreases. Heating up to 170°C followed by cooling causes an increase in the intensity for all the components except the dendrimer. The data obtained show that annealing is an important method for improving the emission efficiency of the proposed thin-film structures, due to a change in the packing of the activator molecules in the polymer matrix leading to more efficient transfer of the excitation energy. Molecules of the studied dendrimer are not stable when exposed to optical radiation and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Kukhto, Zh. Prikl. Spektr., 70, 151–176 (2003).

    Google Scholar 

  2. M. A. Diaz-Garcia, S. F. De Avila, and M. G. Kuzyk, Appl. Phys. Lett., 80, 4486–4488 (2002).

    Article  ADS  Google Scholar 

  3. Lotfia El-Nadi, Latifa Al-Houty, M. M. Omar, and M. Ragaby, Chem. Phys. Lett., 286, 9–14 (1998).

    Article  ADS  Google Scholar 

  4. J. H. Schon, C. Kloc, A. Dodabalapur, and B. Batlogg, Science, 289, 599–601 (2000).

    Article  ADS  Google Scholar 

  5. M. A. Baldo, R. J. Holmes, and S. R. Forrest, Phys. Rev. B, 66, 035321–035321-16 (2002).

    Google Scholar 

  6. N. Tessler, Adv. Mater., 11, 363–370 (1999).

    Article  Google Scholar 

  7. T. Katsume, M. Hiramoto, and M. Yokoyama, Appl. Phys. Lett., 69, 3722–3724 (1996).

    Article  ADS  Google Scholar 

  8. S. Tokito, H. Tanaka, A. Okada, and Y. Taga, Appl. Phys. Lett., 69, 878–880 (1996).

    Article  ADS  Google Scholar 

  9. T.-W. Lee and O. O. Park, Adv. Mater., 12, 801–804 (2000).

    Article  Google Scholar 

  10. Dongge Ma, J. M. Lupton, R. Beavington, P. L. Burn, and I. D. W. Samuel, J. Phys. D: Appl. Phys., 35, 520–523 (2002).

    Article  ADS  Google Scholar 

  11. U. Scherf and E. J. W. List, Adv. Mater., 14, 477–487 (2002).

    Article  Google Scholar 

  12. C. Adachi, R. Kwong, and S. R. Forrest, Org. Electronics, 2, 37–43 (2001).

    Article  Google Scholar 

  13. Y. Kawamura, K. Goushi, J. Brooks, J. J. Brown, H. Sasabe, and C. Adachi, Appl. Phys. Lett., 86, 071104-1-3 (2005).

    Google Scholar 

  14. K. Inoue, Prog. Polym. Sci., 25, 453–571 (2000).

    Article  Google Scholar 

  15. F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, and A. J. Heeger, Accts. Chem. Res., 30, 430–436 (1997).

    Article  Google Scholar 

  16. G. Geliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, Appl. Phys. Lett., 83, 2118–2120 (2003).

    Article  ADS  Google Scholar 

  17. L. R. Lidholt and W. W. Wladimiroff, Opto-Electron., 2, 21–24 (1970).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kukhto.

Additional information

__________

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 6, pp. 820–825, November–December, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kukhto, A.V., Kolesnik, É.É., Gurskii, A.L. et al. Emission properties of thin films of electroactive doped polymers. J Appl Spectrosc 74, 915–920 (2007). https://doi.org/10.1007/s10812-007-0142-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-007-0142-4

Key words

Navigation