Skip to main content
Log in

Fluorescence and absorption of a polystyrene-based scintillator exposed to UV laser radiation

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

We have established that exposure of polystyrene-based scintillator samples to UV laser radiation (248 nm) leads to a significant decrease in the fluorescence intensity. We have carried out a spectral analysis of the luminescent and absorption properties of the scintillator, which allowed us to determine the major factor in the decrease in luminescence intensity of the samples exposed to UV radiation. We propose a new hypothesis for the mechanism of the processes leading to the decrease in light output of the scintillator during operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Pikaev, Modern Radiation Chemistry. Solids and Polymers [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  2. J. Guillet, Polymer Photophysics and Photochemistry [Russian translation], Mir, Moscow (1988).

    Google Scholar 

  3. B. V. Grinev and V. G. Senchishin, Plastic Scintillators [in Russian], Akta, Kharkov (2003).

    Google Scholar 

  4. R. N. Nurmukhametov, N. V. Ryzhakova, I. L. Belaits, and R. Yunyaev, Vysokomol. Soedin. B, 43, 1586–1590 (2001).

    Google Scholar 

  5. B. Bodmann and U. Holm, Nucl. Instr. and Meth. B, 185, 299–304 (2001).

    Article  ADS  Google Scholar 

  6. W. Busjan, K. Wick, and T. Zoufal, Nucl. Instr. and Meth. B, 151, 434–437 (1999).

    Article  ADS  Google Scholar 

  7. W. Busjan, K. Wick, and T. Zoufal, Nucl. Instr. and Meth. B, 152, 89–104 (1999).

    Article  ADS  Google Scholar 

  8. K. Wick and T. Zoufal, Nucl. Instr. and Meth. B, 185, 341–345 (2001).

    Article  ADS  Google Scholar 

  9. B. Bodmann, S. Gob, and U. Holm, Nucl. Instr. and Meth. B, 208, 495–499 (2003).

    Article  ADS  Google Scholar 

  10. V. B. Taraban, N. B. Bol’bit, É. R. Klinshpont, I. P. Shelukhov, and V. K. Milinchuk, Khim. Vysok. Energ., 33, 198–203 (1999).

    Google Scholar 

  11. R. N. Nurmukhametov, L. V. Volkova, and S. P. Kabanov, Zh. Prikl. Spektr., 73, 54–58 (2006).

    Google Scholar 

  12. B. Ranby and J. F. Rabek, Photodegradation, Photo-Oxidation and Photostabilization of Polymers [Russian translation], Mir, Moscow (1978).

    Google Scholar 

  13. S. I. Kuzina and A. I. Mikhailov, Eur. Polym. J., 29, 1589–1593 (1993).

    Article  Google Scholar 

  14. S. I. Kuzina and A. I. Mikhailov, Eur. Polym. J., 34, 291–295 (1998).

    Article  Google Scholar 

  15. B. M. Krasovitskii, B. V. Grinev, Yu. M. Vinetskaya, and L. I. Bogdanova, Spectra of Organic Luminophores. Atlas. No. 1 [in Russian], Folio, Institute of Single Crystals, Kharkov (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Nurmukhametov.

Additional information

__________

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 6, pp. 744–749, November–December, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nurmukhametov, R.N., Volkova, L.V., Klimenko, V.G. et al. Fluorescence and absorption of a polystyrene-based scintillator exposed to UV laser radiation. J Appl Spectrosc 74, 824–830 (2007). https://doi.org/10.1007/s10812-007-0128-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-007-0128-2

Key words

Navigation