Calculation of transition intensities for torsional vibrations in IR and Raman spectra of dihydroxybenzenes

Abstract

We present the calculated intensity distribution for bands and lines in torsional IR and Raman spectra of dihydroxybenzenes. The calculations were based on calculated matrix elements for the components of the dipole moment and the polarizability tensor.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    E. S. Voropai, K. N. Solov’ev, and D. S. Umreiko, eds., Spectroscopy and Luminescence of Molecular Systems [in Russian], Izdat. Tsentr BGU, Minsk (2002), pp. 364–382.

    Google Scholar 

  2. 2.

    M. A. Ksenofontov, D. S. Umreiko, L. E. Ostrovskaya, and A. S. Khatenko, Spectral Analysis of Dihydroxybenzenes As the Basic Structural Unit of Gas-Filled Polymers [in Russian], Izdat. Tsentr BGU, Minsk (2005).

    Google Scholar 

  3. 3.

    W. G. Fately, G. L. Carlson, and F. F. Bentley, J. Phys. Chem., 79, 199–204 (1975).

    Article  Google Scholar 

  4. 4.

    H. Tylli and H. Konschin, J. Mol. Struct., 57, 13–19 (1979).

    Article  Google Scholar 

  5. 5.

    T. M. Dunn, R. Tembreull, and D. M. Lubman, Chem. Phys. Lett., 121, 453–457 (1985).

    Article  ADS  Google Scholar 

  6. 6.

    V. A. Mironenko, N. L. Rogalevich, and M. A. Ksenofontov, Zh. Prikl. Spektr., 44, 68–72 (1986).

    Google Scholar 

  7. 7.

    M. Onda, K. Hasunuma, T. Hashimoto, and I. Yamaguchi, J. Mol. Struct., 159, 243–248 (1987).

    Article  Google Scholar 

  8. 8.

    W. Caminati, S. DiBernardo, L. Schafer, S. Q. Kulp-Newton, and K. Siam, J. Mol. Struct., 240, 263–274 (1990).

    Article  Google Scholar 

  9. 9.

    S. J. Humphrey and D. W. Pratt, J. Chem. Phys., 99, 5078–5086 (1993).

    Article  ADS  Google Scholar 

  10. 10.

    W. Caminati, S. Melandri, and L. B. Favero, J. Chem. Phys., 100, 8569–8572 (1994).

    Article  ADS  Google Scholar 

  11. 11.

    T. Burgi and S. Leutwyler, J. Chem. Phys., 101, 8418–8429 (1994).

    Article  ADS  Google Scholar 

  12. 12.

    M. Gerhards, W. Perl, and K. Kleinermanns, Chem. Phys. Lett., 240, 506–512 (1995).

    Article  ADS  Google Scholar 

  13. 13.

    S. Melandri, G. Maccaferri, W. Caminati, and P. G. Favero, Chem. Phys. Lett., 256, 513–517 (1996).

    Article  Google Scholar 

  14. 14.

    A. Pieretti, F. Ramondo, L. Bencivenni, and M. Spoliti, J. Mol. Struct., 560, 315–326 (2001).

    Article  Google Scholar 

  15. 15.

    P. Venkata Ramana Rao and G. Ramana Rao, Spectrochim. Acta, A, 58, 3039–3065 (2002).

    Article  Google Scholar 

  16. 16.

    N. Akai, S. Kudoh, M. Takayanagi, and M. Nakata, Chem. Phys. Lett., 356, 133–139 (2002).

    Article  Google Scholar 

  17. 17.

    P. Imhof, R. Brause, and K. Kleinermanns, J. Mol. Spectr., 211, 65–70 (2002).

    Article  ADS  Google Scholar 

  18. 18.

    H. G. Kjaergaard, D. L. Howard, D. P. Schofield, T. W. Robinson, S. Ishiuch, and M. Fujii, J. Phys. Chem. A, 106, 258–266 (2002).

    Article  Google Scholar 

  19. 19.

    S. A. Kudchadker and B. J. Zwolinski, J. Mol. Struct., 48, 271–277 (1978).

    Article  Google Scholar 

  20. 20.

    C. Puebla and T.-K. Ha, J. Mol. Struct. (THEOCHEM), 204, 337–351 (1990).

    Article  Google Scholar 

  21. 21.

    K. Kim and K. D. Jordan, Chem. Phys. Lett., 241, 39–44 (1995).

    Article  ADS  Google Scholar 

  22. 22.

    G. Chung, O. Kwon, and Y. Kwon, J. Phys. Chem. A, 101, 9415–9420 (1997).

    Article  Google Scholar 

  23. 23.

    M. A. Ksenofontov, E. Yu. Bobkova, L. E. Ostrovskaya, D. S. Umreiko, V. S. Vasil’eva, A. S. Khatenko, Zh. Prikl. Spektr., 71, 722–726 (2004).

    Google Scholar 

  24. 24.

    R. D. Parra and C. E. Calderon, J. Mol. Struct. (THEOCHEM), 682, 235–240 (2004).

    Article  Google Scholar 

  25. 25.

    M. Mandado, A. M. Grana, and R. A. Mosquera, Phys. Chem. Chem. Phys., 6, 4391–4396 (2004).

    Article  Google Scholar 

  26. 26.

    M. A. El’yashevich, Atomic and Molecular Spectroscopy, Editorial URSS, Moscow (2001).

    Google Scholar 

  27. 27.

    M. B. Shundalov, G. A. Pitsevich, M. A. Ksenofontov, and D. S. Umreiko, Zh. Prikl. Spektr., 74, 178–183 (2007).

    Google Scholar 

  28. 28.

    W. Zierkiewicz, D. Michalska, and P. Hobza, Chem. Phys. Lett., 386, 95–100 (2004).

    Article  Google Scholar 

  29. 29.

    H. D. Bist, J. C. D. Brand, and D. R. Williams, J. Mol. Spectr., 24, 402–412 (1967).

    Article  ADS  Google Scholar 

  30. 30.

    K. M. T. Yamada and S. C. Ross, J. Mol. Struct., 795, 84–92 (2006).

    Article  ADS  Google Scholar 

  31. 31.

    http://www.aist.go.jp/RIODB/SDBS/(National Institute of Advanced Industrial Science and Technology, date of access)

  32. 32.

    M. B. Shundalov, G. A. Pitsevich, M. A. Ksenofontov, and D. S. Umreiko, Zh. Prikl. Spektr., 73, 133–135 (2006).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. B. Shundalov.

Additional information

__________

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 5, pp. 598–603, September–October, 2007.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shundalov, M.B., Pitsevich, G.A., Ksenofontov, M.A. et al. Calculation of transition intensities for torsional vibrations in IR and Raman spectra of dihydroxybenzenes. J Appl Spectrosc 74, 659–665 (2007). https://doi.org/10.1007/s10812-007-0106-8

Download citation

Key words

  • dihydroxybenzenes
  • torsional IR and Raman spectra
  • intensity calculations
  • dipole moment
  • polarizability tensor