Skip to main content
Log in

Physicochemical properties of Mg-phthalocyanine molecules covalently bonded to the surface of nanopores in a silicate gel matrix

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

Molecules of Mg-tetracarboxyphthalocyanine, chemically modified with 3-aminopropyltrimethoxysilane, were immobilized on the surface of the nanopores in a silicate gel matrix by copolymerizing them with tetraethoxysilane monomer. Formation of covalent bonds between the Mg-phthalocyanine molecules and the surface of the nanopores in the silicate xerogel was confirmed by the absence of leaching of the “grafted” pigment from the interior volume of the xerogel to the liquid extraction agent, and also by IR Fourier spectroscopy data. The observed bleaching of the activated silicate xerogel under normal atmospheric conditions is reversible: subsequent heat treatment restores the original absorption spectrum. We hypothesize that two mechanisms are responsible for the observed effect: formation of high order associates of the Mg-phthalocyanine molecules involving water molecules adsorbed from the atmosphere, and/or oxidation of the phthalocyanine macrocycle with disruption of the conjugation chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. L. Hench and J. K. West, Chem. Rev., 90, 33–72 (1990).

    Article  Google Scholar 

  2. A. A. Shaposhnikov, R. T. Kuznetsova, T. N. Kopylova, G. V. Maier, E. N. Tel’minov, T. A. Pavich, and S. M. Arabei, Kvant. Elektron., 34, 715–721 (2004).

    Article  Google Scholar 

  3. K. Dou, X. Sun, X. Wang, R. Parkhill, Y. Guo, and E. T. Knobbe, IEEE J. Quantum Electron., 35, 1004–1014 (1999).

    Article  Google Scholar 

  4. J.-P. Galaup, S. M. Arabei, K. N. Solovyov, T. A. Pavich, and E. A. Makarova, J. Phys. Chem. A, 108, 9510–9515 (2004).

    Article  Google Scholar 

  5. S. K. Lam, M. A. Chan, and D. Lo, Sens. Actuators B, 73, 135–141 (2001).

    Article  Google Scholar 

  6. A. V. Veret-Lemarinier, J. P. Galaup, A. Ranger, F. Chaput, and J. P. Boilot, J. Lumin., 64, 223–229 (1995).

    Article  Google Scholar 

  7. D. Delmarre and C. Bied-Charreton, Sens. Actuators, B, 62, 136–142 (2000).

    Article  Google Scholar 

  8. H. Xia and M. Nogami, Opt. Mater., 15, 93–98 (2000).

    Article  ADS  Google Scholar 

  9. A. O. Ribeiro, J. C. Biazzotto, and O. A. Serra, J. Non-Cryst. Sol., 273, 198–202 (2000).

    Article  Google Scholar 

  10. V. Iamamoto, H. C. Sacco, J. C. Biazzotto, K. J. Ciuffi, and O. A. Serra, An. Acad. Bras. Ci., 72, 59–66 (2000).

    Google Scholar 

  11. S. Mangematin and A. B. Sorokin, J. Porphyr. Phthalocyan., 5, 674–680 (2001).

    Article  Google Scholar 

  12. C. R. Neri, P. S. Calefi, Y. Iamamoto, and O. A. Serra, Mater. Res., 6, 71–74 (2002).

    Google Scholar 

  13. H. R. Li, J. Lin, H. J. Zhang, L. S. Fu, Q. G. Meng, and S. B. Wang, Chem. Mater., 14, 3651–3655 (2002).

    Article  Google Scholar 

  14. I. Hamerton, J. N. Hay, J. R. Jones, and S.-Y. Lu, Chem. Mater., 12, 568–572 (2000).

    Article  Google Scholar 

  15. L.-M. Zhao and B. Yan, Mater. Res. Bulletin, 14, 1–9 (2006).

    Article  MathSciNet  Google Scholar 

  16. T. Kishida, N. Fujita, K. Sada, and S. Shinkai, Chem. Lett., 33, 1002–1004 (2004).

    Article  Google Scholar 

  17. P. Gregory, J. Porphyr. Phthalocyan., 4, 432–437 (2000).

    Article  Google Scholar 

  18. C. G. Claessens, W. J. Blau, M. Cook, M. Hanack, R. J. M. Nolte, T. Torres, and D. Wohrle, Monatsh. Chem., 132, 3–11 (2001).

    Google Scholar 

  19. D. Dini and M. Hanack, in: K. M. Kadish, K. M. Smith, and R. Guilard, eds., The Porphyrin Handbook, Academic Press, Boston (2000), Vol. 17, pp. 1–36.

    Google Scholar 

  20. K. Ishii and N. Kobayashi, in: K. M. Kadish, K. M. Smith, and R. Guilard, eds., The Porphyrin Handbook, Academic Press, Boston (2000), Vol. 16, pp. 1–42.

    Google Scholar 

  21. A. W. Snow, in: K. M. Kadish, K. M. Smith, and R. Guilard, eds., The Porphyrin Handbook, Academic Press, Boston (2000), Vol. 17, pp. 129–176.

    Google Scholar 

  22. S. M. Arabei, D. V. Novik, T. A. Pavich, and K. N. Solov’ev, Zh. Prikl. Spektr., 74, 211–217 (2007).

    Google Scholar 

  23. B. N. Achar, G. M. Fohlen, J. A. Parker, and J. Keshavayya, Indian J. Chem., 27A, 411–416 (1988).

    Google Scholar 

  24. K. Kamiya, T. Yoko, K. Tanaka, and M. Takeuchi, J. Non-Cryst. Sol., 121, 182–187 (1990).

    Article  Google Scholar 

  25. F. del Monte and D. Levy, J. Phys. Chem. B, 103, 8080–8086 (1999).

    Article  Google Scholar 

  26. I. Zareba-Grodz, W. Mista, W. Strek, E. Bukowska, K. Hermanowicz, and K. Maruszewski, Opt. Mater., 26, 207–211 (2004).

    Article  ADS  Google Scholar 

  27. D. L. Wood and E. M. Rabinovich, J. Non-Cryst. Sol., 107, 199–211 (1989).

    Article  Google Scholar 

  28. A. Kh. Kuptsov and G. N. Zhizhin, Fourier Raman and Infrared Absorption Spectra of Polymers [in Russian], Moscow (2001).

  29. L. L. Gladkov, S. F. Shkirman, N. I. Sushko, V. K. Konstantinova, N. A. Sokolov, and K. N. Solovyov, Spectr. Lett., 34, 709–719 (2001).

    Article  Google Scholar 

  30. A. N. Sidorov and I. P. Kotlyar, Opt. i Spektr., 11, 175–184 (1961).

    ADS  Google Scholar 

  31. A. A. Pechenyi, V. A. Kalibabchuk, and V. N. Zaitsev, Funkts. Mater., 1, 119–123 (1994).

    Google Scholar 

  32. B. D. Berezin, Porphyrin and Phthalocyanine Coordination Compounds [in Russian], Nauka, Moscow (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Arabei.

Additional information

__________

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 5, pp. 591–597, September–October, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arabei, S.M., Pavich, T.A. Physicochemical properties of Mg-phthalocyanine molecules covalently bonded to the surface of nanopores in a silicate gel matrix. J Appl Spectrosc 74, 651–658 (2007). https://doi.org/10.1007/s10812-007-0105-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-007-0105-9

Key words

Navigation