Skip to main content
Log in

Method of resonance near-field optical microscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

We have solved the problem in which a thin metal wafer (probe) with a nanohole interacts with the flat surface of a metastructured film consisting of metal nanoparticles in an external optical radiation field. Nanoparticles are considered as two-level atomic systems. This interaction of the wafer-probe and the flat surface in the external optical radiation field gives rise to optical near-field resonance, the frequency of which differs significantly from the natural frequencies of two-level atoms in the medium and the probe. The fields inside and outside the probe and metastructured film are calculated in the near-field and far-field zones. The maximum resolution, which is achievable in the suggested scheme of near-field optical microscopy, can reach about 10 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Bethe, Phys. Rev., 66, 163–172 (1944).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. E. Betzig and R. Chichester, Science, 262, 1422–1428 (1993).

    Article  ADS  Google Scholar 

  3. F. J. Garcia de Abajo, Opt. Express, 10, No. 25, 1475–1484 (2002).

    ADS  Google Scholar 

  4. D. Molenda, G. Colas des Francs, U. C. Fischer, N. Rau, and A. Naber, Opt. Express, 13, No. 26, 10688–10696 (2005).

  5. O. N. Gadomskii and A. S. Kunitsyn, Zh. Prikl. Spektrosk., 67, 777–783 (2000).

    Google Scholar 

  6. O. N. Gadomskii and K. Yu. Moiseev, Opt. Spektrosk., 93, 167–176 (2002).

    Article  Google Scholar 

  7. O. N. Gadomskii and A. S. Kadochkin, Zh. Eksp. Teor. Fiz., 124, 516–528 (2003).

    Google Scholar 

  8. B. Knoll and F. Keilmann, Nature (London), 399, 134–140 (1999).

    Article  ADS  Google Scholar 

  9. O. N. Gadomskii, Usp. Fiz. Nauk, 170, 1145–1165 (2000).

    Article  Google Scholar 

  10. O. N. Gadomskii and A. S. Kadochkin, Opt. Spektrosk., 98, 300–308 (2005).

    Google Scholar 

  11. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms, Wiley, Chichester, Engl. (1975).

    Google Scholar 

  12. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, New York (1998).

    Google Scholar 

  13. M. Born and É. Vol’f, Principles of Optics [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  14. V. P. Krainov and M. B. Smirnov, Usp. Fiz. Nauk, 170, 969–990 (2000).

    Google Scholar 

  15. O. N. Gadomskii and A. S. Shalin, Zh. Eksp. Teor. Fiz., 104, 5–13 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kadochkin.

Additional information

__________

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 4, pp. 499–506, July–August, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadochkin, A.S. Method of resonance near-field optical microscopy. J Appl Spectrosc 74, 552–560 (2007). https://doi.org/10.1007/s10812-007-0087-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-007-0087-7

Key words

Navigation