Skip to main content
Log in

Change in the optical properties of paper when exposed to the magnetic component of a high-frequency electromagnetic field

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

We have used laser Stokes polarimetry to study changes in the structure of paper for offset printing when exposed to a high-frequency electromagnetic field. We have shown that the effect of a high-frequency electromagnetic field on paper appears as a decrease in the structural ordering of the material and a change in the shape of the indicatrix of the reflected radiation power from an He-Ne laser at the wavelength 632.8 nm, a decrease in the bidirectional reflection and transmission coefficients of the paper. We have established that when the force lines of the magnetic component of the high-frequency electromagnetic field are oriented perpendicular to the plane of the sheet of paper, we observe a more substantial decrease in the anisotropy in the surface layer and within the interior (the volume) of the paper than when the lines of force are oriented parallel to the plane of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Schastlivtsev, L. N. Romashev, I. L. Yakovleva, and V. D. Sadovskii, Fizika Metallov i Metallovedenie, 51, 773–782 (1981).

    Google Scholar 

  2. V. V. Azharonok, G. N. Zdor, A. G. Anisovich, et al., Izv. Ross. Akad. Nauk, Metally, No. 4, 100–105 (2003).

  3. S. A. Koksharov, O. I. Konstantinov, A. V. Nikol’skii, and A. P. Moryganov, Zh. Prikl. Khim., No. 3, 565–571 (1990).

  4. N. V. Krasnogorskaya, ed., Electromagnetic Fields in the Biosphere, Nauka, Moscow (1984), Vol. 1, pp. 326–368.

    Google Scholar 

  5. J. Penuelas, J. Lusia, B. Martinez, and J. Fontcuberta, Electromagnetic Biology and Medicine, 23, No. 2, 97–112 (2004).

    Google Scholar 

  6. F. Kimura, T. Kimura, M. Tamura, A. Hirai, et al., Langmuir, 21, No. 5, 2034–2037 (2005).

    Article  Google Scholar 

  7. A. Yu. Persidskaya, I. R. Kuzeev, and V. A. Antipin, Khim. Fizika, 21, No. 2, 90–98 (2002).

    Google Scholar 

  8. V. A. Antipin, S. S. Ostakchov, A. Yu. Persidskaya, et al., in: Proceedings of the Sixth Conference on the Physics and Chemistry of Elementary Chemical Processes, 16–20 March 2002, Nauka, Novosibirsk (2002).

    Google Scholar 

  9. V. E. Gul’, O. A. Khanchich, and N. A. Savchenko, Mekhanika Kompozitsionnykh Materialov i Konstruktsii, 1, No. 2, 124–128 (1995).

    Google Scholar 

  10. V. A. Belyi, V. V. Snezhkov, S. V. Bezrukov, et al., Dokl. Akad. Nauk SSSR, 302, No. 2, 355–357 (1988).

    Google Scholar 

  11. Yu. M. Molchanov, Yu. P. Rodin, and E. R. Kisis, Mekhanika Polimerov, No. 5, 916–919 (1976).

  12. T. Kimura, M. Yamato, W. Koshimizu, and T. Kawai, Chem. Lett., No. 10, 1057–1060 (1990).

  13. B. M. Vladimirskii and N. A. Temur’yants, Biofizika, 41, 926–929 (1996).

    Google Scholar 

  14. V. N. Bingi and A. V. Savin, Usp. Fiz. Nauk., 173, 265–300 (2003).

    Google Scholar 

  15. I. P. Susak, O. A. Ponomarev, and A. S. Shigaev, Biofizika, 50, 367–370 (2005).

    Google Scholar 

  16. T. Kimura, M. Yamato, W. Koshimizu, et al., Langmuir, 16, 858–861 (2000).

    Article  Google Scholar 

  17. J. Sugiyama, H. Chanzy, and G. Maret, Macromolecules, 25, 4232–4234 (1992).

    Article  ADS  Google Scholar 

  18. D. B. Montgomery, Production of High Magnetic Fields with Solenoids [Russian translation; original title uncertain], Mir, Moscow (1971).

    Google Scholar 

  19. V. A. Dlugunovich, V. N. Snopko, and O. V. Tsaryuk, Zh. Prikl. Spektr., 66, 869–874 (1999).

    Google Scholar 

  20. A. N. Zaidel’, G. V. Ostrovskaya, and Yu. I. Ostrovskii, Spectroscopy Methods and Practice, Nauka, Moscow (1972).

    Google Scholar 

  21. M. J. Kavaya, R. T. Menzies, and D. A. Yaner, App. Opt., 22, 2619–2628 (1983).

    ADS  Google Scholar 

  22. F. E. Nicodemus, Appl. Opt., 9, 1474–1475 (1970).

    Article  ADS  Google Scholar 

  23. G. K. Kholopov, Opt. Zh., 67, 30–34 (2000).

    Google Scholar 

  24. V. N. Snopko, Polarization Characteristics of Optical Radiation [in Russian], Navuka i Tekhnika, Minsk (1992).

    Google Scholar 

  25. X. D. He, K. E. Torrance, F. X. Sillion, and D. P. Greenberg, Computer Graphics, 25, 175–186 (1991).

    Article  Google Scholar 

  26. S. N. Ivanov, Paper Technology [in Russian], Lesnaya Promyshlennost’, Moscow (1970).

    Google Scholar 

  27. M. A. G. Abushagur and N. George, Appl. Opt., 24, 4141–4145 (1985).

    ADS  Google Scholar 

  28. V. A. Dlugunovich, E. A. Kruplevich, Yu. A. Kurochkin, and V. N. Snopko, Zh. Prikl. Spektr., 65, 926–931 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Azharonok.

Additional information

__________

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 4, pp. 421–426, July–August, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azharonok, V.V., Filatova, I.I., Voshchula, I.V. et al. Change in the optical properties of paper when exposed to the magnetic component of a high-frequency electromagnetic field. J Appl Spectrosc 74, 465–471 (2007). https://doi.org/10.1007/s10812-007-0075-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-007-0075-y

Key words

Navigation