Skip to main content

Electrothermal atomization of a substance with fractional condensation of the element being determined on a probe

Abstract

This paper describes a method of electrothermal atomization with a fractional condensation of the elements being determined on a refractory probe with the aim of decreasing the matrix influences on the atomic-absorption signal. In the course of primary atomization of the sample, the probe is placed over the dosing port of a tubular atomizer. The internal argon flow directs the vapor to the probe for the condensation of the elements being determined. The matrix vapors volatilize. Then the probe is inserted into the atomizer for evaporation of the elements and analytical signal recording. It has been shown that this technique makes it possible to decrease the influence of sodium chloride and potassium sulfate on the absorption of Ag, Cd, Pb, and Au by a factor of 50–20,000 as compared to the atomization from the atomizer wall. In the case of Au, this decrease is comparable to the level attained under the conventional conditions of a stabilized temperature furnace with a platform, a modifier, and a background corrector based on the Zeeman effect, while for the other elements its efficiency is 1.5–40 times higher.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. 1.

    T. M. Rettberg and J. A. Holcombe, Spectrochim. Acta, 39A, 249–260 (1984).

    Google Scholar 

  2. 2.

    T. M. Rettberg and J. A. Holcombe, Spectrochim. Acta, 41A, 377–389 (1986).

    Google Scholar 

  3. 3.

    T. M. Rettberg and J. A. Holcombe, Anal. Chem., 58, 1462–1467 (1986).

    CAS  Google Scholar 

  4. 4.

    T. M. Rettberg and J. A. Holcombe, Anal. Chem., 60, 600–605 (1988).

    CAS  Google Scholar 

  5. 5.

    D. A. Katskov and N. A. Orlov, Atomic-Absorption Analysis of Geological Samples. Electrothermal Atomization [in Russian], Apatity (1990).

  6. 6.

    P. Hocqullet, Spectrochim. Acta, 47A, 719–729 (1992).

    Google Scholar 

  7. 7.

    Yu. A. Zakharov and A. Kh. Gil’mutdinov, Zh. Prikl. Spektrosk., 71, 109–114 (2004).

    Google Scholar 

  8. 8.

    A. Kh. Gilmutdinov, M. Sperling, and B. Welz, Electrothermal Atomization Means for Analytical Spectrometry, U.S. Patent No. 5, 981, 912 (1999).

  9. 9.

    K. Yu. Nagulin, A. Kh. Gil’mutdinov, and L. A. Grishin, Zh. Anal. Khim., 58, 439–446 (2003).

    Google Scholar 

  10. 10.

    A. N. Rcheushvilli, Zh. Anal. Khim., 36, 1889–1894 (1981).

    Google Scholar 

  11. 11.

    I. L. Grinshtein, Y. A. Vil’pan, A. V. Saraev, and L. A. Vasilieva, in: Proc. 4th Eur. Furnace Symp. and XVth Slovak Spectroscopic Conf., Kosice-Hihg Tetras-Slovakia (2000), pp. 229–234.

  12. 12.

    I. L. Grinshtein, Y. A. Vil’pan, A. V. Saraev, and L. A. Vasilieva, Spectrochim. Acta, 56B, 261–274 (2001).

    CAS  Google Scholar 

  13. 13.

    Yu. A. Zakharov and A. Kh. Gil’mutdinov, Zh. Prikl. Spektrosk., 71, 253–258 (2004).

    Google Scholar 

  14. 14.

    G. Hermann, A. Trenin, R. Matz, M. Gafurov, A. Kh. Gil’mutdinov, K. Yu. Nagulin, W. Frech, E. Björn, I. Grinshtein, and L. Vasilieva, Spectrochim. Acta, 59B, 737–748 (2004).

    CAS  Google Scholar 

  15. 15.

    G. Schlemmer and B. Radziuk, Analytical Graphite Furnace Atomic Absorption Spectrometry. A Laboratory Guide, Birkhauser Verlag, Basel, Switzerland (1999).

    Google Scholar 

  16. 16.

    Yu. A. Zakharov and A. Kh. Gil’mutdinov, Method of Spectral Analysis, RF Patent No. 2229701 (2004).

  17. 17.

    B. V. L’vov, Atomic-Absorption Analysis [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  18. 18.

    D. Littlejohn, S. Cook, D. Durie, and J. M. Ottaway, Spectrochim. Acta, 39B, 295–304 (1984).

    CAS  Google Scholar 

  19. 19.

    H. Berndt and J. Messerschmidt, Fresenius Z. Anal. Chem., 316, 201–204 (1983).

    CAS  Google Scholar 

  20. 20.

    D. C. Manning, W. Slawin, and S. Myers, Anal. Chem., 51, 2375–2378 (1979).

    CAS  Google Scholar 

  21. 21.

    R. M. Camero, L. M. Forglietta, and J. Alvarado D, At. Spectrosc., 23, 12–15 (2002).

    CAS  Google Scholar 

  22. 22.

    M. V. Grebennikov, A. A. Emel’yanov, Yu. P. Lyashenko, and V. I. Barsukov, Method of Electrothermal Atomization, USSR Inventor’s Certificate No. 1567938 A1, G01 N 21/74 (1990).

  23. 23.

    G. N. Abramovich, Applied Gas Dynamics [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  24. 24.

    B. Welz, G. Schlemmer, and J. Mudakavi, J. Anal. At. Spectrom., 7, 1257–1271 (1992).

    CAS  Google Scholar 

  25. 25.

    V. A. Kireev, A Short Course in Physical Chemistry [in Russian], Khimiya, Moscow (1969).

    Google Scholar 

  26. 26.

    M. Sperling, B. Welz, J. Hertzberg, C. Rieck, and G. Marowsky, Spectrochim. Acta, 51B, 897–930 (1996).

    CAS  Google Scholar 

  27. 27.

    M. A. Castro, K. Faulds, W. E. Smith, A. J. Aller, and D. Littlejohn, Spectrochim. Acta, 59B, 827–839 (2004).

    CAS  Google Scholar 

  28. 28.

    A. J. Scheie and J. A. Holcombe, J. Anal. At. Spectrom., 9, 415–417 (1994).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Zakharov.

Additional information

__________

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 1, pp. 124–128, January–February, 2005.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zakharov, Y.A., Gil’mutdinov, A.K. & Kokorina, O.B. Electrothermal atomization of a substance with fractional condensation of the element being determined on a probe. J Appl Spectrosc 72, 132–137 (2005). https://doi.org/10.1007/s10812-005-0043-3

Download citation

Keywords

  • electrostatic atomic-absorption spectrometry
  • fractional condensation
  • refractory probe
  • matrix interference