Skip to main content
Log in

Cyanobacterial biofertilizer inoculation has a distinctive effect on the key genes of carbon and nitrogen cycling in paddy rice

  • Research
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Cyanobacterial biofertilizers provide soil fertility and productivity gains at varying levels in paddy rice cultivation. The colonization and influences of introduced strains in different soil types with characteristic compositions of native cyanobacteria remain largely unknown. In this work, seven paddy rice soils with the composition of indigenous cyanobacteria described by amplicon sequencing analysis were inoculated with the cyanobacterial biofertilizer. The microbial abundance and the cyanophage concentrations were evaluated under light-dark or continuous dark cycles using quantitative polymerase chain reaction (qPCR) assays. The copies of cyanobacterial-16S rRNA gene markers varied from 5.65 × 106 to 9.22 × 107 g-1 soil, and their abundance increased significantly in the inoculated soils. The cyanophage concentrations, quantified using the capsid assembly protein gene g20 in the soils tested, ranged from 3.04 × 108 to 9.24× 108 g-1 soil on 30 days after incubation. There were significant increases in the abundance of the nifH gene copies, about 1.54×105 to 1.35×106 g-1, in the inoculated soils, albeit with soil type-specific responses. The gene markers of C and N cycling (i.e., cbbL and nifH, respectively), taxonomic markers (of archaea, bacteria, and cyanobacteria), and cyanophage-specific gene copies showed strong and positive correlation with the cyanobacterial biofertilizer inoculation. However, the genes related to nitrification (bacterial and archaeal amoA) and denitrification (nirS, nirK, narG, and nosZ) were clustered together in the uninoculated soils. The rice rhizospheres in three representative paddy soil types, using metatranscriptomics analysis, showed distinctive colonization by cyanobacteria, with several members yet to be described. These results indicate the potential for improving cyanobacterial biofertilizers for their contributions to plant growth and fertility gains in a soil-specific way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Datasets that support the findings of qPCR analysis and amplicon sequencing in this study are available from the corresponding author [B. R.], upon reasonable request. Datasets that support the findings of metatranscriptomics analysis in the study are available in the online repositories. The names of the repository(ies) and accession number(s) can be found below: https://www.ncbi.nlm.nih.gov/sra/PRJNA1003687

References

  • Abinandan S, Shanthakumar S, Panneerselvan L, Venkateswarlu K, Megharaj M (2022) Algalization of acid soils with Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3 enriches bacteria of ecological importance. ACS Agric Sci Technol 2:512–520

    Article  CAS  Google Scholar 

  • Adams DG (2000) Heterocyst formation in cyanobacteria. Curr Opin Microbiol 3:618–624

    Article  CAS  PubMed  Google Scholar 

  • Andrews S (2010) Fast QC: A Quality Control Tool for High Throughput Sequence Data. Babraham Bioinformatics, Babraham Institute, Cambridge

    Google Scholar 

  • Beltran-Garcia MJ, Martínez-Rodríguez A, Olmos-Arriaga I, Valdes-Salas B, Di Mascio P, White JF (2021) Nitrogen fertilization and stress factors drive shifts in microbial diversity in soils and plants. Symbiosis 84:379–390

    Article  CAS  Google Scholar 

  • Bergman B (2001) Nitrogen-fixing cyanobacteria in tropical oceans, with emphasis on the Western Indian Ocean. S Afr J Bot 67:426–432

    Article  CAS  Google Scholar 

  • Berman-Frank I, Lundgren P, Chen YB, Kupper H, Kolber Z, Bergman B, Falkowski P (2001) Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294:1534–1537

    Article  CAS  PubMed  Google Scholar 

  • Bethany J, Johnson SL, Garcia-Pichel F (2022) High impact of bacterial predation on cyanobacteria in soil biocrusts. Nat Commun 13:4835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhooshan N, Singh A, Sharma A, Verma C, Kumar A, Pabbi S (2020) Cyanobacterial biofertilizer’s successful journey from rural technology to commercial enterprise: an Indian perspective. J Appl Phycol 32:3995–4002

    Article  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinform 30:2114–2120

    Article  CAS  Google Scholar 

  • Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamizo S, Mugnai G, Rossi F, Certini G, De Philippis R (2018) Cyanobacteria inoculation improves soil stability and fertility on different textured soils: gaining insights for applicability in soil restoration. Front Environ Sci 6:49

    Article  Google Scholar 

  • Choi O, Das A, Yu CP, Hu Z (2010) Nitrifying bacterial growth inhibition in the presence of algae and cyanobacteria. Biotechnol Bioeng 107:1004–1011

    Article  CAS  PubMed  Google Scholar 

  • Corrochano-Monsalve M, González-Murua C, Estavillo JM, Estonba A, Zarraonaindia I (2021) Impact of dimethylpyrazole-based nitrification inhibitors on soil-borne bacteria. Sci Total Environ 792:148374

    Article  CAS  PubMed  Google Scholar 

  • Cui X, Zhang Y, Gao J, Peng F, Gao P (2018) Long-term combined application of manure and chemical fertilizer sustained higher nutrient status and rhizospheric bacterial diversity in reddish paddy soil of Central South China. Sci Rep 8:16554

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai Z, Su W, Chen H, Barberán A, Zhao H, Yu M, Yu L, Brookes PC, Schadt CW, Chang SX, Xu J (2018) Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe. Global Change Biol 24:3452–3461

    Article  Google Scholar 

  • Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R (2012) Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics 13:162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvorak P, Hindak F, Hasler P, Hindakova A, Poulickova A (2014) Morphological and molecular studies of Neosynechococcus sphagnicola, gen. et sp. nov. (Cyanobacteria, Synechococcales). Phytotaxa 170:24–34

  • Eloy Alves RJ, Minh BQ, Urich T, von Haeseler A, Schleper C (2018) Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat Commun 9:1517

    Article  Google Scholar 

  • Gaby JC, Bukley DH (2012) A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS One 7:e42149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Pichel F, Zehr JP, Bhattacharya D, Pakrasi HB (2020) What’s in a name? The case of cyanobacteria. J Phycol 56:1–5

    Article  PubMed  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods. Agronomy 9. ASA, Madison, pp 383–411

    Google Scholar 

  • Ghorbani E, Nowruzi B, Nezhadali M, Hekmat A (2022) Metal removal capability of two cyanobacterial species in autotrophic and mixotrophic mode of nutrition. BMC Microbiol 22:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grasso CR, Pokrzywinski KL, Waechter C, Rycroft T, Zhang Y, Aligata A, Kramer M, Lamsal A (2022) A review of cyanophage–host relationships: Highlighting cyanophages as a potential cyanobacteria control strategy. Toxins 14:385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera-Peralta C, Maldonado-Pereira L, Cantú-Lozano D, Medina-Meza IG (2022) Mixotrophic cultivation boost nutraceutical content of Arthrospira (Spirulina) platensis. AgriRxiv. https://doi.org/10.31220/agriRxiv.2022.00139

  • Huang W, Li B, Zhang C, Zhang Z, Lei Z, Lu B, Zhou B (2015) Effect of algae growth on aerobic granulation and nutrients removal from synthetic wastewater by using sequencing batch reactors. Bioresour Technol 179:187–192

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Jiang C, Xu S, Zheng X, Lv P, Wang C, Wang D, Zhuang X (2022) Spatiotemporal changes of bacterial communities during a cyanobacterial bloom in a subtropical water source reservoir ecosystem in China. Sci Rep 12:14573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iniesta-Pallarés M, Brenes-Álvarez M, Lasa AV, Fernández-López M, Álvarez C, Molina-Heredia FP, Mariscal V (2023) Changes in rice rhizosphere and bulk soil bacterial communities in the Doñana wetlands at different growth stages. Appl Soil Ecol 190:105013

    Article  Google Scholar 

  • Kaplan A (2016) Cyanophages: starving the host to recruit resources. Curr Biol 26:R511–R513

    Article  CAS  PubMed  Google Scholar 

  • Khoobkar Z, Amrei HD (2021) Effect of photo, hetero and mixotrophic conditions on the growth and composition of Anabaena variabilis: An Energy Nexus approach. Energy Nexus 2:100010

    Article  CAS  Google Scholar 

  • Krustok I, Odlare M, Truu J, Nehrenheim E (2016) Inhibition of nitrification in municipal wastewater treating photobioreactors: Effect on algal growth and nutrient uptake. Bioresour Technol 202:238–243

    Article  CAS  PubMed  Google Scholar 

  • Li X, Li B, Wang C, Chen Y, Ma P (2020) Effects of long-term fertilization on different nitrogen forms in paddy along soil depth gradient. Am J Plant Sci 11:2031–2042

    Article  Google Scholar 

  • Massey MS, Davis JG (2023) Beyond soil inoculation: Cyanobacteria as a fertilizer replacement. Nitrogen 4:253–262

    Article  CAS  Google Scholar 

  • McKenney DJ, Drury CF, Wang SW (2001) Effects of oxygen on denitrification inhibition, repression, and derepression in soil columns. Soil Sci Soc Am J 65:126–132

    Article  CAS  Google Scholar 

  • Muth-Pawlak D, Kreula S, Gollan PJ, Huokko T, Allahverdiyeva Y, Aro EM (2022) Patterning of the autotrophic, mixotrophic, and heterotrophic proteomes of oxygen-evolving cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 13:891895

  • Nurk S, Meleshko D, Korobeynikov A, Pevzner PA (2017) metaSPAdes: a new versatile metagenomic assembler. Genome Res 27:824–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otero-Jiménez V, del Pilar Carreno-Carreno J, Barreto-Hernandez E, van Elsas JD, Uribe-Velez D (2021) Impact of rice straw management strategies on rice rhizosphere microbiomes. Appl Soil Ecol 167:104036

    Article  Google Scholar 

  • Oufdou K, Mezrioui N, Oudra B, Barakate M, Loudiki M, Ait Alla A (2000) Relationships between bacteria and cyanobacteria in the Marrakech waste stabilisation ponds. Water Sci Technol 42:171–178

    Article  Google Scholar 

  • Pan B, Xia L, Lam SK, Wang E, Zhang Y, Mosier A, Chen D (2022) A global synthesis of soil denitrification: Driving factors and mitigation strategies. Agric Ecosyst Environ 327:107850

    Article  CAS  Google Scholar 

  • Paul JH, Alfreider A, Wawrik B (2000) Micro- and macrodiversity in rbcL sequences in ambient phytoplankton populations from the southeastern Gulf of Mexico. Mar Ecol Prog Ser 198:9–18

  • Prasanna R, Nayak S (2007) Soil pH and its role in cyanobacterial abundance and diversity in rice field soils. Appl Ecol Env Res 5:103–113

    Article  Google Scholar 

  • Priya H, Prasanna R, Ramakrishnan B, Bidyarani N, Babu S, Thapa S, Renuka N (2015) Influence of cyanobacterial inoculation on the culturable microbiome and growth of rice. Microbiol Res 171:78–89

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan B, Raju MN, Venkateswarlu K, Megharaj M (2023) Potential of microalgae and cyanobacteria in improving soil health and agricultural productivity-a critical view. Env Sci Adv 2:586–611

    Article  Google Scholar 

  • Ranjan K, Priya H, Ramakrishnan B, Prasanna R, Venkatachalam S, Thapa S, Tiwari R, Nain L, Singh R, Shivay YS (2016) Cyanobacterial inoculation modifies the rhizosphere microbiome of rice planted to a tropical alluvial soil. Appl Soil Ecol 108:195–203

    Article  Google Scholar 

  • Rotthauwe JHH, Witzel KPP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing population. Appl Environ Microbiol 63:4704–4712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saadatnia H, Riahi H (2009) Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant Soil Environ 55:207–212

    Article  Google Scholar 

  • Sánchez-Baracaldo P, Bianchini G, Wilson JD, Knoll AH (2022) Cyanobacteria and biogeochemical cycles through Earth history. Trends Microbiol 30:143–157

    Article  PubMed  Google Scholar 

  • Shapleigh JP (2013) Denitrifying Prokaryotes. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes – Prokaryotic Physiology and Biochemistry. Springer, Berlin, pp 405–425

    Google Scholar 

  • Sigee DC, Glenn R, Andrews MJ, Bellinger EG, Butler RD, Epton HA, Hendry RD (1999) Biological control of cyanobacteria: principles and possibilities. Hydrobiologia 395/396:161–172

  • Soil Survey Staff (2022) Keys to Soil Taxonomy, 13th edn. USDA Natural Resources Conservation Service, Washington

    Google Scholar 

  • Song X, Peng C, Li D (2022) Fate of nitrogen fixed by nitrogen-fixing cyanobacteria in rice and soil during the vegetative growth period of rice. J Appl Phycol 34:2051–2061

    Article  CAS  Google Scholar 

  • Soo RM, Hemp J, Hugenholtz P (2019) Evolution of photosynthesis and aerobic respiration in the cyanobacteria. Free Radical Biol Med 140:200–205

    Article  CAS  Google Scholar 

  • Soong JL, Fuchslueger L, Marañon-Jimenez S, Torn MS, Janssens IA, Penuelas J, Richter A (2020) Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling. Global Change Biol 26:1953–1961

    Article  Google Scholar 

  • Stal LJ (2015) Nitrogen fixation in cyanobacteria. In: eLS, John Wiley & Sons, Ltd, Chichester. https://doi.org/10.1002/9780470015902.a0021159.pub2

  • Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2013) Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ Int 51:59–72

    Article  CAS  PubMed  Google Scholar 

  • Subbiah BV, Asija GL (1956) A rapid procedure for the estimation of available nitrogen in soils. Curr Sci 25:259–260

    CAS  Google Scholar 

  • Thingstad TF, Lignell R (1997) Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat Microb Ecol 13:19–27

    Article  Google Scholar 

  • Trevors JT (1985) The influence of oxygen concentrations on denitrification in soil. Appl Microbiol Biotechnol 23:152–155

    Article  CAS  Google Scholar 

  • Valverde A, Makhalanyane TP, Seely M, Cowan DA (2015) Cyanobacteria drive community composition and functionality in rock–soil interface communities. Mol Ecol 24:812–821

    Article  CAS  PubMed  Google Scholar 

  • Venkataraman GS (1972) Algal biofertilizers and rice cultivation. Today & Tomorrow’s Printers & Publishers, New Delhi

    Google Scholar 

  • Venkataraman GS (1981) Blue-green algae for rice production- A manual for its promotion Field document 2, FAO Soils Bulletins 46. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Vijayan D, Ray JG (2015) Ecology and diversity of cyanobacteria in Kuttanadu paddy wetlands, Kerala, India. Am J Plant Sci 6:2924–2938

    Article  CAS  Google Scholar 

  • Wang G, Asakawa S, Kimura M (2011) Spatial and temporal changes of cyanophage communities in paddy field soils as revealed by the capsid assembly protein gene g20. FEMS Microbiol Ecol 76:352–359

    Article  CAS  PubMed  Google Scholar 

  • Wubs ER, Van der Putten WH, Bosch M, Bezemer TM (2016) Soil inoculation steers restoration of terrestrial ecosystems. Nat Plants 2:16107

    Article  PubMed  Google Scholar 

  • Yang Y, Chen X, Liu L, Li T, Dou Y, Qiao J, Wang Y, An S, Chang SX (2022) Nitrogen fertilization weakens the linkage between soil carbon and microbial diversity: a global meta-analysis. Glob Chang Biol 28:6446–6461

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Song X, Wei H, Zhou W, Peng C, Li D (2021) Effect of substituting nitrogen fertilizer with nitrogen-fixing cyanobacteria on yield in a double-rice cropping system in southern China. J Appl Phycol 33:2221–2232

    Article  CAS  Google Scholar 

  • Zhu Y, Chen X, Yang Y, Xie S (2022) Impacts of cyanobacterial biomass and nitrate nitrogen on methanogens in eutrophic lakes. Sci Total Environ 848:157570

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Gerard Abraham for providing the cyanobacterial cultures, and the Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, and the National Phytotron Facility (NPF), ICAR-IARI, New Delhi for the necessary facilities to conduct the experiments.

B. K. acknowledges the IARI Senior Scholarship for her doctoral studies. P. S. thanks the Graduate School, ICAR-IARI for the internship. R. S., S.G., and S. K. thank the Graduate School for the fellowships. B. R. thanks the funding agencies for their support for the projects on 'Soil microbiome modulation strategies to enhance nitrogen acquisition efficiency in rice (ICAR-NRM. 11(16)/2015-AFC(8))' and 'Archaeal- and anaerobic ammonia oxidative processes of nitrogen cycling in oxic and anoxic soils (SERB/SR/S0/PS/164/2010).'

Author information

Authors and Affiliations

Authors

Contributions

B. K.: Conducting experiments, sample processing, data collection, data analysis, statistical analysis, and writing-original draft.

P. S.: Sample collection, soil physicochemical analysis, and contributed to writing the results section.

R. S.: Analyses, reviewing, and editing of the manuscript.

S. G.: Soil physicochemical analysis and editing of manuscript.

S. K.: Sample processing, analyses, and editing of the manuscript.

B. R.: Funding, Research supervision, methodology, data validation, reviewing and editing of the manuscript.

* All authors reviewed the manuscript.

Corresponding author

Correspondence to Balasubramanian Ramakrishnan.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9118 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kour, B., Sharma, P., Ramya, S. et al. Cyanobacterial biofertilizer inoculation has a distinctive effect on the key genes of carbon and nitrogen cycling in paddy rice. J Appl Phycol (2024). https://doi.org/10.1007/s10811-024-03230-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10811-024-03230-0

Keywords

Navigation